Sequential coalescence with charm conservation

Pengfei Zhuang
(Tsinghua University, Beijing)

Sequential coalescence:
2(3)-body Dirac equation + hydrodynamics + coalescence

Charm conservation

D_s/D^0 enhancement in A-A collisions

by Jiaxing Zhao & Shuzhe Shi and Nu Xu & PZ
Hadronization

- **Hadronization in vacuum**

a non-perturbative and unsolved problem.

- **Hadronization of quark matter**

 statistical distribution at freeze-out:

 \[N_{meson} \sim \int d\sigma^\mu p_\mu W(x, p)f_q(x_1, p_1)f_{\bar{q}}(x_2, p_2) \]

 \[P.Braun-Munzinger, J.Stachel, J.Wessels and N.Xu, PLB344, 43(1995) \]

 coalescence (recombination) models:

 \[V.Greco, C.Ko and P.Levai, PRL90, 202302(2003) \]

 \[R.Hwa and C.Yang, PRC70, 024905(2004), …… \]

- **Two assumptions**

 1) assumed coalescence probability (Wigner function)

 \[W(x, p) \sim e^{-\frac{x^2}{\langle x \rangle^2}} e^{-\frac{p^2}{\langle p \rangle^2}} \text{ with parameters } \langle x \rangle \text{ and } \langle p \rangle \]

 2) assumption of simultaneous hadronization for all hadrons

- **Heavy quark hadronization**

 Sequential dissociation by (non-relaytivistic and relativistic) potential models

 \[H.Satz, JPG32, R25(2006) \]

 \[X.Guo, S.Shi and PZ, PLB718, 1439(2012) \]

 1) sequential dissociation temperature

 \[T_{J/\psi} > T_{\psi'} \approx T_{\chi_c} \]

 \[\rightarrow \text{ heavy flavor hadrons are sequentially produced}! \]

 2) self-consistent Wigner function \[W(x, p) = \int d^4y e^{-iyp} \psi(x + \frac{y}{2})\psi^*(x - \frac{y}{2}) \]
Sequential heavy flavor production

■ Step 1: From 2(3)-body Dirac equations for heavy flavor mesons and baryons
 → sequential production temperature T_h
 and wave function $\psi(x)$ [Wigner function $W(x, p)$]

■ Step 2: From hydrodynamic equations for QGP evolution
 → $T(\vec{x}, t) = T_h$ → sequential production time $t_h(\vec{x}, T_h)$

■ Step 3: Sequential coalescence
 \[N_m \sim \int d\sigma^\mu p_\mu W(x, p) f_q(x_1, p_1) f_{\bar{q}}(x_2, p_2) \]
 \[N_b \sim \int d\sigma^\mu p_\mu W(x, p) f_q(x_1, p_1) f_q(x_2, p_2) f_q(x_3, p_3) \]
Step 1: Sequential production temperature

For heavy flavor mesons

\[T=0: \text{see H.Crater, J.Yoon and C.Wong, PRD79, 034011(2009)} \]
\[T>0: \text{see S.Shi, X.Guo and PZ, PRD88, 014021(2013)} \]

For heavy flavor baryons

N-body relativistic potential model

Schroedinger-like equation for baryon wave function

\[
\mathcal{V}_{ij} = 2m_{ij}S + S^2 + 2\epsilon_{ij}A - A^2 + \Phi_D + \sigma_i \cdot \sigma_j \Phi_{SS} + \mathbf{L}_{ij} \cdot (\sigma_i + \sigma_j)\Phi_{SO} + (\sigma_i \cdot \mathbf{r}_{ij})(\sigma_j \cdot \mathbf{r}_{ij})\mathbf{L}_{ij} \cdot (\sigma_i + \sigma_j)\Phi_{SOT} + \mathbf{L}_{ij} \cdot (\sigma_i - \sigma_j)\Phi_{SOD} + i\mathbf{L}_{ij} \cdot (\sigma_i \times \sigma_j)\Phi_{SOX} + (3(\sigma_i \cdot \mathbf{r}_{ij})(\sigma_j \cdot \mathbf{r}_{ij}) - \sigma_i \cdot \sigma_j)\Phi_T
\]

\[
\mathbf{V}_{qq}(r) = A_{qq}(r) + S_{qq}(r),
\]
\[
A_{qq}(r) = -\alpha_{qq}/r,
\]
\[
S_{qq}(r) = \sigma_{qq} r.
\]

\[T_h/T_c \simeq \begin{cases}
1.15 & \text{for } D_s \\
1.10 & \text{for } D^0 \\
1 & \text{for } \Lambda_c
\end{cases} \]

O.Kaczmarek, EPJC 61, 811(2009)

S.Shi, J.Zhao and PZ, arXiv:1905.10627

Pengfei Zhuang, SQM2019, Bari, 20190610-15
Step 2: Sequential production time

Hydrodynamic equations:

\[\partial \mu T_{\mu \nu} = 0 \]
\[\partial \mu n_\mu = 0 \]

\[\rightarrow \tau(\vec{x}|T_h) \]

\[\tau_{J/\psi} < \tau_{D_S} < \tau_{D^0} < \tau_{\Lambda_c} < \tau_{\pi,K,N} \]
Step 3: Sequential coalescence

\[N_b \sim \int \frac{P^\mu d\sigma^\mu(R)}{(2\pi)^3} f_q(r_1, p_1)f_q(r_2, p_2)f_q(r_3, p_3)W(r, p) \]

Hydrodynamics
Energy loss
Dirac equations

- **light quarks** \((u, d)\):
 - full energy loss, equilibrium distribution

 \[f_q = \frac{N_q}{e^{(u\mu p_p - \mu q)/T} + 1} \]

- **strange quark** \(s\):
 - thermal equilibrium but not chemical equilibrium

 \[f_s = \frac{N_s\lambda_s}{e^{u\mu p_p / T} + 1} \]

 \[\lambda_s = \begin{cases}
 0.85 & \text{at RHIC} \\
 1 & \text{at LHC}
 \end{cases} \]

Pengfei Zhuang, SQM2019, Bari, 20190610-15
Charm conservation

If all charmed hadrons are simultaneously produced, the charm conservation contributes only a normalization constant, → it does not change the particle ratios!

- If charmed hadrons are sequentially produced, however, more charm quarks are involved in the earlier production and less in the later production,

\[
r_h = \frac{\text{involved charm quarks}}{\text{total charm quarks } N_c} = \begin{cases}
1 & \text{for } h = D_s \\
1 - \frac{N_{D_s}}{N_c} \ (\sim 90\%) & \text{for } h = D^0 \\
1 - \frac{N_{D_s} + N_{D^0}}{N_c} \ (\sim 60\%) & \text{for } h = \Lambda_c
\end{cases}
\]

K.Zhou, Z.Chen, C.Greiner and PZ., PLB758, 434(2016)

M.Gorenstein, A.Kostyuk, H.Stoecker and W.Greiner, PLB509, 277(2001)
S.Plumari, V.Minissale, S.Das and V.Greco, EPJC78, 348(2018)
Charm quark distribution

Charm quarks are not fully thermalized:

\[f_c = r_h \rho_c(x) \left[\alpha f_{th}(p) + \beta f_{pp}(p) \right] \]

\(r_h \) is the charm conservation factor,
thermalization fraction \(\alpha \) depends on the coalescence time:

\[
(\alpha, \beta) = \begin{cases}
(0.4, 0.6) & D_s \\
(0.5, 0.5) & D^0 \\
(0.6, 0.4) & \Lambda_c
\end{cases}
\]

charm quark density

\[\rho_c(x) = T_A(x_T)T_B(x_T - b) \frac{\cosh \eta}{\tau} \frac{d\sigma_{pp}^{c\bar{c}}}{d\eta} \]

Normalized rapidity and transverse momentum distributions with PYTHIA8
D_s/D^0 enhancement

Strong D_s/D^0 enhancement at RHIC

![Graph showing D_s/D^0 ratio vs. transverse momentum p_T](image)

$L. Zhou [STAR], NPA967, 620(2017)$

D_s enhancement due to strangeness enhancement in quark matter

$M. He, R. Fries and R. Rapp, PRL 110, 112301(2013)$

However, D_s enhancement cannot fully explain the D_s/D^0 enhancement!

D_s enhancement + charm conservation induce D^0 suppression

\rightarrow a further D_s/D^0 enhancement!

![Graphs showing D_s/D^0 ratio vs. p_T](image)

$L. Zhou [STAR], NPA967, 620(2017)$

$J. Zhao, S. Shi, N. Xu and PZ, arXiv: 1805.10858$

$J. Adam et. al. [ALICE], JHEP 1603, 082(2016)$

solid lines: with charm conservation, dashed lines: without charm conservation

Pengfei Zhuang, SQM2019, Bari, 20190610-15
\[\Lambda_c/D^0 \text{ and } \Xi_c/D^0 \]

solid lines: with charm conservation, dashed lines: without charm conservation

\(D_s \) is produced first, then \(D^0 \), and finally \(\Lambda_c \) and \(\Xi_c \).
Baryon density effect

- **quark distributions at finite baryon density**

\[f_{u,d} = \frac{N_{u,d}}{e^{(u_p \mu_B - \mu_B)/T} + 1} \]
\[f_s = \frac{N_s \lambda_s}{e^{u_p \mu / T} + 1} \]

at high baryon density, more \(u \) and \(d \) quarks, less \(\bar{u} \) and \(\bar{d} \) quarks, and probably \(n_{\bar{u}} < n_{\bar{s}} \)!

Calculated quark number density at \(\vec{r} = 0 \):

- **\(D_s(c\bar{s}) \) enhancement and \(D^0(c\bar{u}) \) suppression at high \(\mu_B \)!

J.Zhao, S.Shi, N.Xu and PZ, in progress

\[\text{pp limit} \quad \sqrt{s} \]

\[D_s/D^0 \quad \text{Au+Au Central, } |y|<0.1 \]

\[u(d) \quad s(\bar{s}) \quad \bar{u}(\bar{d}) \quad c(\bar{c}) \]

11
$D_s/D^0(\sqrt{s})$

A significantly strong D_s/D^0 enhancement at about $\sqrt{s} = 10$ GeV where the baryon density is the largest.
Comparison with K/π

The behavior of D_s^+ / D^0 (D_s^- / \bar{D}^0) is similar to K^+ / π^+ (K^- / π^-).

The two peaks locate at the largest baryon density.
Summary

- We developed a sequential coalescence model for heavy flavor hadron production: 2(3)-body Dirac equations + hydrodynamic equations + coalescence.

- Charm conservation enhances significantly the ratio D_s/D^0.

- D_s/D^0 is further enhanced at high baryon density.