First order dissipative hydrodynamics from an effective covariant kinetic theory

Samapan Bhadury¹

Collaborators:

Manu Kurian², Dr. Vinod Chandra², Dr. Amaresh Kumar Jaiswal¹

At

SQM 2019, Bari, Italy

June 11, 2019

¹National Institute of Science Education and Research, Bhubaneswar

Outline:

1 Hydrodynamics

- 2 Kinetic Theory
- 3 Quasiparticle Models
 Effective Fugacity
 Effective Mass
- 4 Result and Discussions
- 5 Conclusion and Outlook

Hydrodynamics

Hydro Equations :

• In Landau frame $(u_{\nu}T^{\mu\nu} = \epsilon u^{\mu})$:

$$T^{\mu\nu} = \underbrace{\epsilon \ u^{\mu} u^{\nu} - P \Delta^{\mu\nu}}_{\text{Ideal part}} + \Pi^{\mu\nu}$$
(1)
$$N^{\mu} = \underbrace{n u^{\mu}}_{\text{Ideal part}} + n^{\mu}$$
(2)

- ϵ , *P*, *n*, u^{μ} are energy density, pressure, number density and flow velocity respectively.
- $g^{\mu\nu} = diag(1, -1, -1, -1)$ and $\Delta^{\mu\nu} = g^{\mu\nu} u^{\mu}u^{\nu}$.
- Dissipative quantities $\rightarrow \quad \Pi^{\mu\nu} = -\Pi \Delta^{\mu\nu} + \pi^{\mu\nu}; \quad n^{\mu}$
- An observable is macroscopic but interactions are microscopic!

Hydrodynamics

Hydro Equations (contd.):

There are two conservation laws that must be obeyed even for a dissipative fluid system.

• $\partial_{\mu} T^{\mu\nu} = 0;$ $\partial_{\mu} N^{\mu} = 0$ Using these two laws, one finds the hydro equations³ (evolution of thermodynamic quantities) for a relativistic fluid :

$$\dot{\epsilon} + (\epsilon + P + \Pi)\theta - \pi^{\mu\nu}\sigma_{\mu\nu} = 0$$
(3)

$$(\epsilon + P + \Pi)\dot{u}^{\rho} - \nabla^{\rho}(P + \Pi) + \Delta^{\rho}{}_{\nu}\partial_{\mu}\pi^{\mu\nu} = 0 \qquad (4)$$

$$\dot{n} + n\theta + \partial_{\mu}n^{\mu} = 0 \tag{5}$$

Hydro-Equations(5) + EoS(1) = 6 equations. $\epsilon(1) + P(1) + n(1) + u^{\mu}(3) + \Pi(1) + \pi^{\mu\nu}(5) + n^{\mu}(3)$ = 15 unknowns.

³Paul Romatschke, Int. J. Mod. Phys. E 19, 1 (2010)

Outline:

1 Hydrodynamics

- 2 Kinetic Theory
- Quasiparticle Models
 Effective Fugacity
 Effective Mass
- 4 Result and Discussions
- 5 Conclusion and Outlook

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Distribution Function :

- $f(x, p) \rightarrow$ momentum distribution at each space-time point.
- One can connect the macroscopic observables with f(x, p), and examine the evolution of f(x, p).
- The equilibrium distribution function can be expressed as:

$$f_{eq} = \frac{1}{e^{\beta(u \cdot p) - \alpha} + r} \tag{6}$$

- β is inverse absolute temperature, $\alpha = \mu/T$ where μ is the chemical potential.
- r = 0, +1, -1 for MB, FD, BE distributions respectively.

Implementing Kinetic Theory :

Since the macroscopic observables can be found from $T^{\mu\nu}$ and N^{μ} , the first step is to relate these quantities with f(x, p)which can be done as:

$$T^{\mu\nu} = \int dP \ p^{\mu} p^{\nu} f \tag{7}$$
$$N^{\mu} = \int dP \ p^{\mu} f \tag{8}$$

Where the measure is given by:

$$\int dP \equiv \int \frac{d^4 p}{(2\pi)^4} \ 2\Theta(p^0) \ \delta(p^\mu p_\mu - m^2) \tag{9}$$

Boltzmann's Equation:

• The evolution of f(x, p) is governed by the Boltzmann eqn:

$$p^{\mu}\partial_{\mu}f + F^{\mu}\partial^{(p)}_{\mu}f = -C[f]$$
(10)

- $F^{\mu} \rightarrow$ the force term.
- $C[f] \rightarrow$ the collision kernel⁴.
- For non-equilibrium case we have, $f = f_{eq} + \delta f$. $(\delta f / f \ll 1)$

⁴We will use RTA for present case : $\frac{(u \cdot p)}{\tau_R} \delta f$

Dissipative Quantities:

 Using Boltzmann and hydro equations, we can determine the deviation part i.e. δf, which can in turn be be used to evaluate the dissipative quantities as follows:

$$\Pi = -\frac{1}{3} \Delta_{\alpha\beta} \int \mathrm{dp} \ p^{\alpha} p^{\beta} \left(\delta f + \delta \bar{f} \right) \tag{11}$$

$$\pi^{\mu\nu} = \Delta^{\mu\nu}{}_{\alpha\beta} \int \mathrm{dp} \ \boldsymbol{\rho}^{\alpha} \boldsymbol{\rho}^{\beta} \Big(\delta f + \delta \bar{f} \Big) \tag{12}$$

$$m^{\mu} = \Delta^{\mu}{}_{\alpha} \int \mathrm{dp} \ p^{\alpha} \Big(\delta f - \delta \bar{f} \Big)$$
 (13)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outline:

1 Hydrodynamics

2 Kinetic Theory

- Quasiparticle Models
 Effective Fugacity
 Effective Mass
- 4 Result and Discussions
- 5 Conclusion and Outlook

Quasiparticle Picture :

- The QCD Equation of State (EoS) varies with temperature and we have to deal with a dynamic EoS.
- In usual kinetic theory approach, EoS is however taken to be fixed. Thus the transport coefficients obtained in this framework should not reflect their true temperature dependence.
- In a quasiparticle picture, the temperature dependence is taken into account by introducing a temperature dependent factor in the equilibrium distribution function.
- Two of the available quasiparticle models under kinetic theory framework are:
 - (i) Effective Fugacity Model(EQPM),
 - (ii) Effective Mass Model.

Trace Anomaly :

 Lattice data is matched using a temperature dependent fugacity factor. Thus EoS shows realistic behaviour.⁵

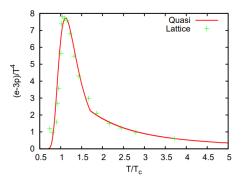


Figure: Trace Anomaly

⁵V. Chandra, V. Ravishankar, Phys.Rev. D84 (2011) 074013

Effective Fugacity

Effective Fugacity Model (EQPM) :

Equilibrium distribution functions are :

$$f_q^0 = \frac{z_q \exp\left[-\beta(u^{\mu}p_{\mu} - \mu_q)\right]}{1 + z_q \exp\left[-\beta(u^{\mu}p_{\mu} - \mu_q)\right]},$$
(14)

$$f_{\bar{q}}^{0} = \frac{z_{q} \exp\left[-\beta(u^{\mu}p_{\mu} + \mu_{q})\right]}{1 + z_{q} \exp\left[-\beta(u^{\mu}p_{\mu} + \mu_{q})\right]},$$
(15)

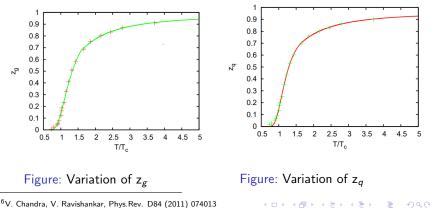
$$f_g^0 = \frac{z_g \exp\left[-\beta(u^{\mu} p_{\mu})\right]}{1 - z_g \exp\left[-\beta(u^{\mu} p_{\mu})\right]}$$
(16)

- *z*_q, *z*_g are the quasiquark and quasigluon fugacity factors respectively.
- These fugacities are functions of T/T_C where $T_c = .170$ GeV

Effective Fugacity

Fugacity Factors :

• The fugacity factors are close to unity for high temperatures⁶.



⁶V. Chandra, V. Ravishankar, Phys.Rev. D84 (2011) 074013

Effective Fugacity

Conserved Quantities :

The energy-momentum tensor and particle number flow are still conserved but must be modified as: **Energy-Momentum Tensor :**

$$T^{\mu\nu}(x) = \sum_{k=1}^{N} g_k \int d\tilde{P} \tilde{p}_k^{\mu} \tilde{p}_k^{\nu} f_k^0(x, \tilde{p}_k) + \sum_{k=1}^{N} \delta\omega_k g_k \int d\tilde{P} \frac{\langle \tilde{p}_k^{\mu} \tilde{p}_k^{\nu} \rangle}{E_k} f_k^0(x, \tilde{p}_k)$$
(17)

where we have⁷: $\langle \tilde{p}_{k}^{\mu} \tilde{p}_{k}^{\nu} \rangle \equiv \frac{1}{2} \left(\Delta^{\mu \alpha} \Delta^{\nu \beta} + \Delta^{\mu \beta} \Delta^{\nu \alpha} \right) \tilde{p}_{\alpha} \tilde{p}_{\beta}$ $\tilde{p}_{k}^{\mu} = p_{k}^{\mu} + \delta \omega_{k} u^{\mu}, \quad \delta \omega_{k} = T^{2} \partial_{T} \ln (z_{k})$

⁷k represents the particle species.

Effective Fugacity

Conserved Quantities (contd.) :

Particle 4-Flow :

$$N^{\mu}(x) = g_{q} \int d\tilde{P} \tilde{p}_{q}^{\mu} \left[f_{q}^{0}(x, \tilde{p}_{k}) - f_{\overline{q}}^{0}(x, \tilde{p}_{k}) \right] + \delta \omega_{q} g_{q} \int d\tilde{P} \frac{\langle \tilde{p}_{q}^{\mu} \rangle}{E_{q}} \left[f_{q}^{0}(x, \tilde{p}_{k}) - f_{\overline{q}}^{0}(x, \tilde{p}_{k}) \right]$$
(18)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Effective Fugacity

Dissipative Quantities :

$$\pi^{\mu\nu} = \sum_{k} g_{k} \Delta^{\mu\nu}_{\alpha\beta} \int d\tilde{P} \tilde{p}_{k}^{\alpha} \tilde{p}_{k}^{\beta} \delta f_{k} + \sum_{k} \delta\omega_{k} g_{k} \Delta^{\mu\nu}_{\alpha\beta} \int d\tilde{P} \tilde{p}_{k}^{\alpha} \tilde{p}_{k}^{\beta} \frac{1}{E_{k}} \delta f_{k}$$
(19)
$$\Pi = -\frac{1}{3} \sum_{k} g_{k} \Delta_{\alpha\beta} \int d\tilde{P} \tilde{p}_{k}^{\alpha} \tilde{p}_{k}^{\beta} \delta f_{k} - \frac{1}{3} \sum_{k} \delta\omega_{k} g_{k} \Delta_{\alpha\beta} \int d\tilde{P} \tilde{p}_{k}^{\alpha} \tilde{p}_{k}^{\beta} \frac{1}{E_{k}} \delta f_{k}$$
(20)
$$n^{\mu} = g_{q} \Delta^{\mu}_{\alpha} \int d\tilde{P} \tilde{p}_{q}^{\alpha} \left(\delta f_{q} - \delta f_{\tilde{q}} \right) - \delta\omega_{q} g_{q} \Delta^{\mu}_{\alpha} \int d\tilde{P} \tilde{p}_{q}^{\alpha} \frac{1}{E_{q}} \left(\delta f_{q} - \delta f_{\tilde{q}} \right)$$
(21)

Effective Fugacity

Transport Coefficients :

Using the dissipative quantities, the transport coefficients can be be found using the following relations:

$$\pi^{\mu\nu} = 2\eta\sigma^{\mu\nu}, \quad \Pi = -\zeta\theta, \quad n^{\mu} = \kappa_n \nabla^{\mu}\alpha \tag{22}$$

 $\eta \rightarrow$ shear viscosity; $\zeta \rightarrow$ bulk viscosity; $\kappa_n \rightarrow$ conductivity;

Effective Mass

Effective Mass Model :

- In this model⁸ ⁹, the mass of the quasiparticles are considered to be temperature dependent. [i.e. m ≡ m(T)]
- Considering a temperature dependent mass allows us to work with a dynamical Equation of State of the QCD matter.
- But there is a problem with validity of thermodynamics.
- This problem however can be resolved by modifying the definition of T^{μν} as:

$$T^{\mu\nu} = \int dP \ p^{\mu} p^{\nu} f - B(T) \ g^{\mu\nu}$$
(23)

By working out the thermodynamics, B(T) turns out to behave like a function similar to Bag pressure.

⁸Paul Romatschke, PRD 85, 065012 (2012)

⁹Tinti, Jaiswal, Ryblewski, PRD **95**, 054007 (2017)

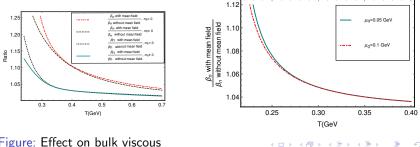
Outline:

1 Hydrodynamics

- 2 Kinetic Theory
- 3 Quasiparticle Models
 Effective Fugacity
 Effective Mass
- 4 Result and Discussions
- 5 Conclusion and Outlook

Effect of Mean Field on β_{π} , β_{Π} , β_{n} :

- The effects of mean field are more visible in the lower temp regime. Also the effect is suppressed for the massive case and for finite baryon chemical potentials too.
- In the high temperature region the ratios tend towards unity.



э

Figure: Effect on bulk viscous

Temperature Dependence of β_{Π}/β_{π} :

- Just like the previous plots, the effects of mean field and finite quark mass are more visible in the lower temp regime.
- The ratio β_{Π}/β_{π} tends to zero at higher temperature.

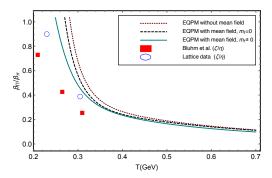


Figure: β_{Π}/β_{π} as a function of temperature for $\mu = 0.1$

Behaviour of conductivities to shear viscosity ratios :

- Conductivity is small compared to shear viscosity at low temp.
- Effect of mean field interaction is significant at low temp.

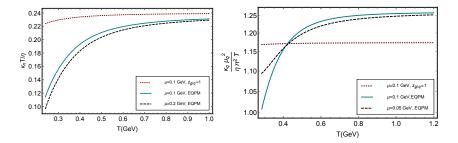


Figure: Charge Conductivity

Figure: Thermal Conductivity = 🔊 ५०

Longitudinal boost-invariant expansion :

 Using Milne coordinates (τ, x, y, η) to evaluate the evolution of energy density for a purely longitudinal expansion we have:

$$au=\sqrt{t^2-z^2}; \quad \eta= anh^{-1}z/t;$$

Then, the fluid four-velocity and metric tensor are modified to:

$$u^{\mu}=(1,0,0,0); \quad g^{\mu
u}=(1,-1,-1,-1/ au^2)$$

• Then the energy density evolution equation for $\mu = 0$ is¹⁰:

$$\frac{d\varepsilon}{d\tau} = -\left(\frac{\varepsilon + P}{\tau}\right) + \left(\frac{\zeta + 4\eta/3}{\tau^2}\right)$$
(24)

Pressure anisotropy is given by:

$$P_L/P_T \equiv (P + \Pi - \Phi)/(P + \Pi + \Phi/2)$$
 is a solution of (25)

Proper Time Evolution of Pressure Anisotropy and Temp :

- EQPM shows faster isotropization than non-interacting Boltzmann particles.
- Presence of viscous effects slows down temp. drop of medium.

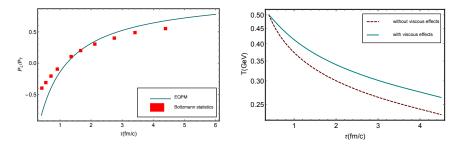


Figure: Pressure Anisotropy

Figure: Temperature Evolution

Conclusion and Outlook

Outline:

1 Hydrodynamics

- 2 Kinetic Theory
- 3 Quasiparticle Models
 Effective Fugacity
 Effective Mass
- 4 Result and Discussions
- 5 Conclusion and Outlook

Conclusion and Outlook

Summary:

- We derived the first order dissipative hydrodynamic evolution equations under EQPM, considering a grand canonical ensemble with finite baryon chemical potential μ_{a} and non-zero quark mass m_a .
- We observed that the mean field contributions produce significant modification to the first order coefficients of the $\pi^{\mu\nu}$, Π and n^{μ} of the hot QGP medium near T_c .
- We found that the charge conductivity is relatively smaller at the lower temperature.
- The effect of the baryon chemical potential is more visible in the temperature regime close to T_c .
- Proper time evolution of temperature and pressure anisotropy are seen to be sensitive to the viscous effects and the equation of state.

Conclusion and Outlook

Thank you