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Overview

1 Magnetohydrodynamic in heavy ion collisions

2 Particle transverse momentum spectrum
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Relativistic MHD

RMHD equations

The coupled RMHD equations are

dµT
µν = 0, Tµν = Tµν

matt + Tµν
EM (1)

dµF
µν = −Jν , (dµJ

µ = 0), Jµ = ρuµ + σµνeν (2)

dµF
∗µν = 0, eµ = Fµνuν , b

µ = F ∗µνuν (3)

Where dµ is covariant derivative.

Resistive RMHD

In the case of finite and homogeneous electrical conductivity σ of medium

Dε+ (ε+ P)Θ = eλJλ, (4)

(ε+ P)Duα +∇αP = FαλJλ − uαeλJλ, (5)

dµF
µν = −Jν , (dµJ

µ = 0), dµF
∗µν = 0 (6)
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Relativistic MHD

Ideal RMHD

If we suppose the electrical conductivity of QGP to be infinite σ →∞
then we obtain electric field four vector eµ = (0, 0, 0, 0). Conservative
equations and Maxwell equations are given by:

D(ε+
1

2
b2) + (ε+ P + b2)Θ + uµb

νdνb
µ = 0, (7)

(ε+ P + b2)Duµ +∇µ(P +
1

2
b2)− bµdνb

ν

−bνdνbµ − uµuνb
λdλb

ν = 0, (8)

Dbµ + Θbµ − uµbνDuν − bνdνu
µ = 0 (9)

Where
D = uµdµ, Θ = dµu

µ

Gabriele Inghirami et al, Eur. Phys. J. C (2016) 76:659.
M. Haddadi Moghaddam et al, Eur. Phys. J. C (2018) 78:255.
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Induced radial flow in B-field

We consider the medium expands
both radially and along the beam
axis, the only nonzero
components of
uµ = (uτ , u⊥, 0, 0) are uτ , which
describes the boost-invariant
longitudinal expansion, and u⊥,
which describes the transverse
expansion.
And we suppose the external
magnetic field to be located in
transverse plane as
bµ = (0, 0, bφ, 0).

Transverse MHD u · B = 0.
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Gubser Flow

Gubser explains a generalization of Bjorken flow where the medium has
finite transverse size and expands both radially and along the beam axis.
The local four-velocity in the flow is entirely determined by the assumption
of symmetry under a subgroup of the conformal group. The profile
suggested by Gubser:

uµ = (uτ , u⊥, 0, 0) (10)

Where,

uτ =
1 + q2τ2 + q2x2⊥

2qτ
√

1 + g2
, u⊥ =

qx⊥√
1 + g2

(11)

And

g =
1 + q2x2⊥ − q2τ2

2qτ
(12)

q is a quantity with dimensions of inverse length.
S. Gubser, Phys. Rev D 82, 085027 (2010)
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Why perturbation approach?

The typical magnetic field produced
in Au-Au peripheral collisions at√
sNN = 200GeV reaches
|eB| ∼ 10m2

π. The estimate
ε ∼ 5.4GeV /fm3 at about proper
time τ = 1fm is taken from Gubser
flow. By taking mπ ≈ 150 MeV and
e2 = 4π/137, one finds B2

c /ε ∼ 0.6.
This value in the central collisions is
much smaller than in peripheral
collisions, therefore, in our
calculations we assumed
B2
c /ε = 0.015 which correspond to

ρ = eB2
c /2ε ∼ 0.002.

Victor Roy et al, Phys. Rev C 92, 064902, (2015)
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Analytical solution

We now seek the perturbative solution in the presence of a weak external
magnetic field pointing along the φ direction in an inviscid fluid with
infinite electrical conductivity:

uµ = (1, λ2u⊥, 0, 0), bµ = (0, 0, λbφ, 0), b2 ≡ bµbµ

ε = ε0(τ) + λ2ε1(τ, x⊥), ε0(τ) =
εc

τ4/3
(13)

Shi Pu et al, Phys. Rev. D 93,054042 (2016)
In such setup, the conservation equations (Energy and Euler eqs.) reduce
to the following partial differential equations

u⊥ − τ2∂⊥(
u⊥
x⊥

)− τ2∂2⊥u⊥ − τ∂τu⊥ + 3τ2∂2τu⊥

−3τ7/3

x⊥εc
b2φ −

3τ7/3

4εc
∂⊥b

2
φ −

9τ10/3

4x⊥εc
∂τb

2
φ −

3τ10/3

4εc
∂⊥∂τb

2
φ = 0.(14)
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Perturbative solution

When bφ = 0, our PDE is a homogeneous partial differential equation,
which can be solved by separation of variables. The general solution are
given by

uhom⊥ (τ, x⊥) =
∑
k

(
ck1 J1(kx⊥) + ck2Y1(kx⊥)

)
×(

c ′k1 τ
2/3J1/3(kτ/

√
3) + c ′k2 τ

2/3Y1/3(kτ/
√

3)
)

(15)

For non-vanishing bφ we assume a space-time profile of the magnetic field
in central collisions in the form:

b2φ(τ, x⊥) = B2
c τ

n√αx⊥e−αx
2
⊥ . (16)

We see that the magnitude of bφ is zero at x⊥ = 0. In order to find
solutions for transverse velocity u⊥ and energy density ε consistently with
the assumed magnetic field, we found it convenient to first expand the
magnetic field, Eq. (16) into a series of x⊥-dependent functions:

b2φ(τ, x⊥) =
∑
k

τnB2
k f (kx⊥), (17)
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Perturbative solution

We consider the following ansatz for radial velocity:

u⊥(τ, x⊥) =
∑
m

(
am(τ)J1(mx⊥) + bm(τ)Y1(mx⊥)

)
(18)

Because when m = 0 then u⊥(τ, x⊥) = 0 so from initial condition we
obtain bm(τ) = 0. Finally, is solved from the following ordinary differential
equation

J1(kx⊥)
(

1 + τ2k2 − τ∂τ + 3τ2∂2τ

)
ak(τ)

−3τ7/3+n

4εc
B2
k

( f (x⊥)

x⊥
(4 + 3n) + ∂⊥(f (x⊥))k(1 + n)

)
= 0. (19)

One easily finds that for ak(τ)(
1 + τ2k2 − τ∂τ + 3τ2∂2τ

)
ak(τ)− 3kτ7/3+n

4εc
B2
k = 0 (20)
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Mathematical setup for magnetic field

From the previous calculations we found that spatial function f (x⊥) obey
in the following ODE

(1 + n)kx⊥∂⊥f (x⊥) + (4 + 3n)f (x⊥) = kx⊥J1(kx⊥). (21)

The general solution is given by

f (kx⊥) =
k2x2⊥Γ

(
2nk+2k+3n+4

2nk+2k

)
1F2

(
2nk+2k+3n+4

2nk+2k ; 2, 4nk+4k+3n+4
2nk+2k ;−1

4k
2x2⊥

)
4(n + 1)Γ

(
4kn+4k+3n+4

2kn+2k

)
+d1(k2(n + 1)x⊥)−

3n+4
kn+k , (22)

where 1F2 is the hypergeometric function. The first term is a well-defined
function, but the second one diverges in x⊥ = 0 for any n except
n = −4/3; hence, d1 must be zero. For n = −1, wich will be considered in
details; the solution of Eq. (21) takes a simple form:

f (kx⊥) = kx⊥J1(kx⊥) (for n = −1) (23)
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Magnetic field profile for the case n = −1

The square of magnetic field:

b2φ(τ, x⊥) =
∑
k

τ−1 B2
k β1k

x⊥
a

J1(β1k
x⊥
a

) (24)

where the coefficients B2
k are given by

B2
k =

2a

a2β1k [J2(β1k)]2

∫ a

0
J1(β1k

x⊥
a

) b2φ dx⊥ (25)

where β1k is the kth zero of J1. In above integral, one can substitute the
appropriate profile for b2φ as we supposed.
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Radial velocity for the case n = −1

The transverse velocity takes the form

u⊥(τ, x⊥) =
∑
k

ak(τ)J1(kx⊥). (26)

ak(τ) = ck1 τ
2/3J 1

3
(
kτ√

3
) + ck2 τ

2/3Y 1
3
(
kτ√

3
) +

πkB2
k

48Γ(23)Γ(76)Γ(43)εc
3
√
kτ(

− 22/3
3
√

3τ4/3Γ(
2

3
)Γ(

7

6
)(kτ)2/3J 1

3
(
kτ√

3
) 1F2(

1

2
;

4

3
,

3

2
;− 1

12
k2τ2)

+2
3
√

232/3τ4/3Γ(
4

3
)Γ(

1

6
)J 1

3
(
kτ√

3
) 1F2(

1

6
;

2

3
,

7

6
;− 1

12
k2τ2)

+22/335/6τ4/3Γ(
2

3
)Γ(

7

6
)(kτ)2/3Y 1

3
(
kτ√

3
) 1F2(

1

2
;

4

3
,

3

2
;− 1

12
k2τ2)

)

ck1 =
3
√
k(3π3/2Γ(76)−

√
πΓ2(16)Γ(56))B2

k

24 3
√

2 6
√

3Γ(56)Γ(76)εc
, ck2 = −

3

√
3
2π

3/2 3
√
kB2

k

8Γ(56)εc
. (27)
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Modified energy density for the case n = −1

The correction of energy density ε1 is obtained from the following
equations:

∂τ ε1 −
4εc

3τ4/3
(
u⊥
x⊥

+
∂u⊥
∂x⊥

) +
4ε1
3τ

+
1

2
∂τb

2
φ +

b2φ
τ

= 0 (28)

∂⊥ε1 −
4εc
τ4/3

∂τu⊥ +
4εc

3τ7/3
u⊥ +

3

2
∂⊥b

2
φ +

3b2φ
x⊥

= 0. (29)

ε1(τ, x⊥) =
∑
k

h(τ) +
∑
k

1

24kτ7/3

(
32εc(J0(kx⊥)− 1)(ak(τ)− 3ta′k(τ))

−9B2
kkτ

4/3(k2x2⊥ 0F1(2;−1

4
k2x2⊥) + 2kx⊥J1(kx⊥)− 8J0(kx⊥) + 8)

)
,(30)

where h(τ) is the constant of integration and can be obtained form

h(τ) =

∫ τ
1

4
3kεcak(s) ds

τ4/3
. (31)
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Results for n = −1

n = -1

x = 1.0

x = 2.0

x = 4.0

x = 6.0

5 10 15 20

0.000

0.002

0.004

0.006

0.008

0.010

0.012

τ

v
x
(
,x

)

n = -1

= 1

= 5

= 10

= 20

0 2 4 6 8 10

0.000

0.002

0.004

0.006

0.008

0.010

0.012

x⊥

v
x
(
,x

)

M. Haddadi Moghaddam Collaborators: W. M. Alberico, B. Azadegan, A. F. Kord (SQM-2019, Bari)Short title June 7, 2019 15 / 25



Results for n = −1
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Scaling parameter α for n = −1
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Gubser Flow

In our work the v⊥ gets smaller
when α is made larger as well as
Gubser, v⊥ get smaller when 1/q
is made larger. It seems that,
parameter

√
α play the role of

parameter 1/q.
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Dynamical transverse effect on particles

From the local equilibrium hadron distribution the transverse spectrum is
calculated via the Cooper-Frye formula in the freeze out surface

S = E
d3N

dp3
=

gi
2π2

∫ xf

0
x⊥ τf (x⊥) dx⊥

[
mTK1(

mTuτ
Tf

)I0(
mTu⊥
Tf

)

+pTRfK0(
mTuτ
Tf

)I1(
mTu⊥
Tf

)
]

(32)

Where τf (x⊥) is the solution of the T (τf , x⊥) = Tf and the degeneracy is
gi = 2 for both the pions and the protons. The above integral over x⊥ on
the freeze-out surface is evaluated numerically.
U. Gursoy et al, Phys. Rev C 89, 054905 (2014)
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Transverse momentum spectrum

The spectrum Eq. (32) is illustrated in the following figures for three
different values of the freeze out temperature (140, 150 and 160 MeV)
and compared with experimental results obtained at PHENIX. in central
collisions.
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M. Haddadi Moghaddam et al, arXiv: 1710.01037 [nucl-th]
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Conclusions and future perspectives

Magnetic fields may produce some relevant effects on several
observable quantities like velocity, energy density, etc.

As preliminary results, hadrons with different masses have different
sensitivities to the electromagnetic fields.

The difference between the charge-dependent flow of light pions and
heavy protons might arise because the former are more affected by
the weak magnetic field than the heavy protons.

In future: effects of electric and magnetic field can be considered. (In
preparation)

M. Haddadi Moghaddam Collaborators: W. M. Alberico, B. Azadegan, A. F. Kord (SQM-2019, Bari)Short title June 7, 2019 21 / 25



Thank you
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Backup Slides
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Relativistic MHD

Energy-momentum tensor and four vector fields

Tµν
pl = (ε+ P)uµuν + Pgµν (33)

Tµν
em = FµηF ν

η −
1

4
F ηρFηρg

µν (34)

Fµν = uµeν − uνeµ + εµνλκbλuκ, (35)

F ?αβ = uµbν − uνbµ − εµνλκeλuκ (36)

Levi - Civita : εµνλκ = 1/
√
− det g [µνλκ], (37)

Electric four vector : eα = γ[v · E, (E + v × B)]T , (Cartezian)(38)

Magnetic four vector : bα = γ[v · B, (B− v × E)]T , (Cartezian)(39)

Where ~v , ~B, ~E are measured in lab frame and γ is Lorentz factor.
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Why to study magnetic field in HIC?

Strong magnetic field may produce many effects:

1 The Chiral Magnetic Effect (CME)

2 The Chiral Magnetic Wave (CMW)

3 The Chiral separation Hall effect (CSHE)

4 Influence on the elliptic flow (v2)

5 Influence on the directed flow (v1)

6 ...
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