
Quarkonia and its fate in the anisotropic hot QGP
medium

18th International Conference on Strangeness in Quark Matter

Author: Mohammad Yousuf Jamal

National Institute of Science Education and Research, India

13th June 2019



Outline
• Quarkonia

• Medium Modified Potential

• Effective Fugacity Model

• Inclusion of Anisotropy

• Binding Energy and Thermal Width

• Results.

• Summary and Conclusion.

• Possible Future Directions.



Quarkonia

• Quarkonia is a colorless and flavorless bound state of quarks and antiquarks,
QQ, mainly created at the very early stages after the heavy-ion collisions.

• A typical lifetime of the medium produced in the A−A collision is smaller
than the lifetime of heavy quarkonia states.

Figure: lead-lead collision Figure: formation of QGP

• The survival/dissociation of quarkonia is a clean probe to study the produced
medium.



Continue..

• While passing through the QGP medium, their potential get modify and
become complex.

• The imaginary part causes thermal width (TW) whereas the real part
contribute to the binding energy (BE).

• At the dissociation temperature, the thermal width equals twice the binding
energy.
A. Mocsy and P. Petreczky, Phys. Rev. Lett. 99, 211602 (2007).

• Experimental observation of J/ψ (which is a bound state of cc) suppression in
the di-lepton mass spectrum is a direct indication of the QGP formation in
relativistic heavy-ion collision experiments.



Medium modified potential

• We employ the vacuum Cornell potential, which describes the QQ̄ potential
V (r) as a combination of the Coulomb and linear potentials:

V(r) = −
α

r
(coulombic) + σr (confining).

α is strong coupling constant,
σ is string tension and
r is effective radius of corresponding quarkonia state.
• The medium modification enters through the dielectric permittivity, ε(k) of

the medium in the Fourier space,

V̀ (k) =
V̄(k)
ε(k)

. (1)

where V̄(k), is the Fourier transform of V(r) and has a form,

V̄(k) = −
√

2
π

(
α

k2 + 2
σ

k4

)
. (2)

• ε(k), can be calculated using the semi-classical transport theory.



Effective fugacity Quasi-particle model
V. Chandra and V. RaviShankar, Phys. Rev. D 84, 074013 (2011)

Quasi-parton equilibrium distribution function
• EQPM maps the hot QCD medium effects in terms of the effective equilibrium

distribution function of quasi-partons which describes the strong interaction effects
in terms of effective fugacities (zg,q).

fg(p) =
1

z−1
g eβEp − 1

, fq(p) =
1

z−1
q eβEp + 1

• These zg/q lead to non-trivial dispersion relation both of the gluonic and quark:

ωg/q = Ep + T
2
∂T log(zg/q).

Debye mass with EQPM

m
2
D

[EoS(i)](T ) =
8 α(T )
π

T
2
(
NcPolyLog[2, zig ]−NfPolyLog[2,−ziq ]

)
.

α(T ) is the running coupling at finite temperature (T ), i− denotes the different EoSs.
In the limit zg,q → 1, mD(T ) reduces to the leading order (LO) or for ideal EoS:

m
2
D

[LO](T ) = 4πα(T ) T 2
(Nc

3
+
Nf

6

)
.

Caution: Model is valid only above Tc.



Anisotropy
P. Romatschke & M. Strickland, PRD(2003, 2004); Carrington & Mrowczynski, PRC (2014)

Anisotropic distribution
The anisotropic distribution function is obtained by stretching/ squeezing the
isotropic one along the direction specified by an anisotropy vector (n), with
anisotropic strength (ξ).

fξ(p) = Cξf

(√
p2 + ξ(p.n)2

)
,

n2 = 1.
θn, is the angle between p and n,
ξ > 0, correspond to contraction, oblate case
ξ < 0, correspond to stretching, prolate case
ξ = 0, took us back to the case of isotropy.

• If one normalizes the Debye mass, in the small-ξ limit, Cξ comes out as,

Cξ =

1− ξ
3 +O

(
ξ

3
2

)
if − 1 ≤ ξ < 0

1 + ξ
3 +O

(
ξ

3
2

)
if ξ ≥ 0.



Medium modified potential
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Quarkonia Binding Energy

• To obtain the binding energy with heavy quark potential, one needs to solve
the Schrödinger equation using the obtained potential.

Doing so for the isotropic case we obatined:

Eb(T ) =
mQ σ2

m4
D(T ) n2 + α mD(T )

In the anisotropic case:

Eb(T ) =
mQ σ2

m4
D(T ) n2 + α mD(T ) +

ξ

3

(
mQ σ2

m4
D(T ) n2 + α mD(T ) +

2 mQ σ2

m4
D(T ) n2

)
Here, n is the radial quantum numbers and mQ is the quark mass.



Quarkonia Thermal Width

• The imaginary part of in-medium potential provides an estimate for thermal
width for a particular resonance state given as,

Γ(T ) = −
∫

d3r |Ψ(r)|2 Im V (r). (3)

• The modified potential, at high temperature, has long-range Coulombic tail
that dominates over all the other terms, one can opt Ψ(r) as Coulombic wave
function.

Thermal width for 1s case:

Γ1s(T ) = T

(
4

α m2
Q

+
12σ

α4 m4
Q

)(
1−

ξ

6

)
m

2
D log

(
mD

α mQ

)
.

Thermal width for 2s case:

Γ2s(T ) =
8 m2

DT

α4 m4
Q

(
1−

ξ

6

)(
7α3

m
2
Q + 192 σ

)
log
(

2 mD
α mQ

)
.

• Now, we have Eb(T ) (BE) and Γ(T ) for different quarkonia states.



Results
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Figure: Γ, 2BE vs T/Tc for J/ψ at Tc = 0.17GeV .

• Exploiting the criteria mentioned earlier, we plotted 2BE along with Γ(T )
and obtain the dissociation temperature, TD as their intersection point.
• Similarly, we obtained for the other states and found a similar pattern, but

numbers were different.



Results

• To give a detailed overview, the results at different anisotropies are shown.

The LO results for both the anisotropic as well as isotropic cases

Temperatures are in the unit of Tc

Anisotropy → ξ = −0.3 ξ = 0.0
Our, Lattice*

ξ = 0.3

1s states ↓
Υ 2.861 2.964, 2.31 3.062
J/ψ 1.487 1.520, 1.10 1.551
2s states ↓
Υ′ 1.447 1.478, 1.10 1.508
ψ′ 1.054 1.066, 0.20 1.078

• TD is found to be smaller for prolate, ξ < 0 whereas it is higher for oblate,
ξ > 0 as compared to isotropic case, ξ = 0 for all states studied here.

• The excited states dissociate at a lower temperature than their corresponding
ground state.

* S. Digal, P. Petreczky and H. Satz, hep-ph/0110406 (Lattice).



Table for 3-loop HTL perturbative calculation results

Temperatures are in the unit of Tc

Anisotropy → ξ = −0.3 ξ = 0.0 ξ = 0.3
1s states ↓
Υ 2.427 2.540 2.639
J/ψ 1.054 1.119 1.172
2s states ↓
Υ′ 1.008 1.067 1.118
ψ′ < 1 < 1 < 1

Table for (2 + 1)- lattice results

Temperatures are in the unit of Tc

Anisotropy → ξ = −0.3 ξ = 0.0 ξ = 0.3
1s states ↓
Υ 2.451 2.564 2.665
J/ψ 1.063 1.121 1.172
2s states ↓
Υ′ 1.023 1.074 1.120
ψ′ < 1 < 1 < 1



Summary and Conclusion

• The quarkonia suppression of bottonium and charmonium (1s and 2s states)
have been discussed within the potential model approach.

• The vacuum inter-quark potential becomes complex in the presence of
isotropic/ anisotropic hot QCD medium.

• The real part leads to the binding energies, whereas the imaginary part gives
rise to the thermal width.

• Γ(T ) equals 2BE, provides the dissociation temperature for a particular
quarkonia state.

• Employing EQPM, the numbers were found to be lower as compared to the
LO.

• TD is found to be smaller for prolate, ξ < 0 whereas it is higher for oblate,
ξ > 0 as compared to isotropic case, ξ = 0 for all states studied here.

• Further, the excited states dissociate at a lower temperature than their
corresponding ground state.

• Based on the above discussion, one can say that the anisotropy, as well as the
hot QCD medium interaction effects, play an essential role in deciding the
fate of heavy-quarkonia states.



Future aspects
• To obtain an expression for the inter-quark potential for the moving medium

and investigate its phenomenological aspect.

• To obtain the survival probability of various quarkonia states to map the
theoretical results with the experimental observations.
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The real and the imaginary part of the modified potential:

Isotropic case

Re[V (r, T )] =
s σ

mD(T )
−
α mD(T )

s

(
1 +

s2

2

)
.

Im[V (r, T )] = −
s2 T

3

(
α+

s2 σ

10 m2
D(T )

)
log
(1
s

)
.

s = r mD(T )

Anisotropic case

Re[V (r, ξ, T )] =
s σ

mD(T )

(
1 +

ξ

3

)
−
α mD(T )

s

[
1 +

s2

2
+ ξ

{
1
3

+
s2

16

(
1
3

+ cos (2θr)
)}]

.

Im[V (r, ξ, T )] =
α s2 T

3

{ ξ

60
(7− 9 cos 2θr)− 1

}
log
(

1
s

)
+
s4 σ T

m2
D

(T )

{ ξ

35

( 1
9
−

1
4

cos 2θr
)

−
1
30

}
log
(

1
s

)
.

θr is the angle between r and n.



Binding Energy

» While considering the small anisotropy, one can solve the Schrödinger
equation and obtained the binding energy by just considering the isotropic
part with the first order perturbation in anisotropy parameter, ξ.

Ĥψν(x) = Eνψν(x), Ĥ = −
∇2

2MR
+ V (x) +M1 +M2.

Here, MR = M1M2
M1+M2

. ν represent a list of relevant quantum number n, l and
m.

» Once the ground state wave-function is found, we can compute its energy
eigenvalue via

Eν =
< ψνĤψν >

< ψν |ψν >
=

∫
d3xψ∗νĤψν∫
d3xψ∗νψν

» To obtain the binding energy of a state, Eν,bind , we subtract the quark
masses and the potential at infinity,

Eν,bind = Eν −M1 −M2 −
< ψν |V (|r| → ∞)|ψν >

< ψν |ψν >



» The idea of dividing potential by dielectric tensor to modify it came from the
analogy of QED.

» If one perturbatively calculates the non-relativistic potential V (r) between
two unlike static charges, say, in QED, the usual Coulomb-like behaviour is
modified by the photon self-energy Π(ω = 0, k) such that,

V (r) =
∫

d3k
(2π)3 e

ik·r −e2

k2 + ΠL
=
∫

d3k
(2π)3 e

ik·r −e2

k2(1 + ΠL
k2 )

(4)

» The dielectric permittivity can be defined as

ε(ω = 0,k) = 1 +
ΠL
k2 (5)


