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Lines of constant entropy per baryon, S/A, illustrate 1D hydro

Ssimulations of heavy ion collisions. Values of S/A are related

to collision energy by shock solution, the Relativistic Rankine

Hugoniot Taub adiabat.

Particle content of neutron stars in CMF model. Presented are
ratios of particle density to the baryon density n./n;at T =0 in

B -equilibrium, for quarks a factor of 1/3 is used. Are presented as
functions of baryon density n.

Parity doublet — baryon octet is doubled by parity
partners with same quantum numbers but opposite
parity and higher masses. Masses are dynamically

generated by chiral fields o and (: Quark
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that is controlled by potential U(®):
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always of second order and take place at very

» Mass-radius diagram is in agreement with astrophysical
large densities n;220n,,.

observations. Stars up to 2.1 M_ are supported [8].

+ b3 Ty log[l — 60" + 4(d° + &*°) — 3(dd*)?] 300 ooy 3M/NB Stable stars contain <30% of deconfined quarks. At high
1.0 1.0 ..
Hadron-resonance gas is included with - central denS|t_|es Neontral” 6n, stars become unsjcable, as a
excluded-volume corrections to mimic hard-core 5.8 0 result stars with significant quark content are disfavored.
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Quarks start to appear only after chiral symmetry is
restored. Quarks are in mixture with hadrons. Only
later the quark matter, V4 nq/nB=1, appears.

0

These ingredients include main features of QCD
phenomenology, so the CMF model [1-3] is
applicable for modeling QCD thermodynamics from
low to high temperatures and densities.
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Dimensionless tidal deformability A — measures
stars’ induced quadruple moment as a response to the

CMF at p_=0: lattice QCD and parity doubling

] 1.50 pepr—— [ e . external tidal field. Important quantity during inspiral
[ —— SU(3) doublet g-h CMF model ' —— SU(3) doublet g-h CMF model - [ —— — N —==- N* ] _
6 mmm lattice, WB . 1.5 S lattice, WB h 1800F _____ = f  smwe B phase of NS merger when tidal forces are large.
[N lattice, HotQOD 3 B lattice, HotQCD - [ eI N\, — 2 -z Bands — recent constraints for radius and tidal
| B R deformability of 1.4 M_ _ star [9].
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In the CMF model the parameters of PNJL sector are modified in accord with lattice QCD [4,5] data. Interaction
measure I was fitted by modifying parameters of the Polyakov loop potential U(®): T, a,, a,, b, and quark
couplings to chiral fields g_ , g..[1]. Kurtosis, x:/x3 , at u,=0 is the CMF model prediction.
At u;=0 masses of octet baryons and respective parity partners smoothly decrease, so at hight T mass
degeneracy among parity partners is restored. The behavior is similar to recently observed in lattice QCD [©].
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SUMMARY

Chiral SU(3) parity-doublet Polyakov loop
quark-hadron mean-field model — is a unified
phenomenological approach to model QCD
thermodynamics at wide range of scales;

e u.=0 lattice QCD data is used to constrain
parameters of model’s quark sector;

e Nuclear liquid-vapor phase transition gives strong
signals in fluctuations even at u =0;

e Chiral symmetry restoration and transition to quark
matter phase are at very high u, and/or T,

e The CMF neutron stars are in agreement with current
astrophysical constraints;

e Transition to quark matter is second order and at high

densities n;z20n,,.
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