Perspectives on strangeness physics with the CBM experiment at FAIR

- Physics case
- MSH reconstructions
- BES-I MSH measurements, models and predictions
- Tests with experimental data
- Summary

13 June 2019 Bari

Physics case: Exploring the QCD phase diagram

Projects to explore the QCD phase diagram at large μ_B: RHIC (STAR) beam energy-scan, HADES, NA61@SPS, MPD@NICA: bulk observables **CBM:** bulk and **rare observables, high statistic!**

The equation-of-state at high ρ_{B}

collective flow of hadrons, particle production at threshold energies: **multi-strange hyperons, hypernuclei**

Deconfinement phase transition at high $\rho_{\rm B}$

excitation function and flow of strangeness (K, Λ , Σ , Ξ , Ω and φ)

Chiral symmetry restoration at high $\rho_{\rm B}$

in-medium modifications of hadrons (ρ) excitation function of **multi-strange (anti)hyperons**

QCD critical endpoint

excitation function of event-by-event fluctuations $(\pi, K, p, \Lambda, \Xi, \Omega...)$

Experiments exploring dense QCD matter

CBM: *unprecedented* (high) rate capability

- determination of (displaced) vertices with high resolution ($\approx 50 \ \mu m$)
- identification of leptons and hadrons
- fast and radiation hard detectors
- self-triggered readout electronics
- high speed data acquisition and
- online event selection
- powerful computing farm and 4D tracking
- software triggers

Strangeness world data

No data available at FAIR energy

ŝ

In the AGS (SIS100) energy range, only about 300 Ξ hyperons have been measured in Au+Au collisions at 6AGeV

High-precision measurements of excitation functions of multi-strange 10 hyperons in A+A collision with different mass numbers A at SIS100 energies have a discovery potential to find a signal for the onset of deconfinement in QCD matter at high net-baryon densities. 10⁻¹

What about models?

Pb+Pb, Au+Au (central)

STAR BES-I arXiv:1906.03732v1 [nucl-ex] 9 Jun 2019

of strange baryons

Strangeness results submitted for publication soon

Helen Caines EMMI Workshop GSI February 2019

 $\Omega^{\pm}\left(!
ight)$

CBN

MSH measurements and models

* STAR BES data by **Helen Caines EMMI Workshop GSI February 2019**

- Thermal model by A. Andronic 32 CBM week

-- PHSD by P.Moreau **SQM 2015**

- Very reasonable agreement by both models
- **More strangeness** needed (PHSD)

QGP and Chiral symmetry restoration

"Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density" W. Cassing, A. Palmese, P. Moreau, and E. L. Bratkovskaya Phys.Rev. C93 (2016), 014902, arXiv:1510.04120 [nucl-th]

Chiral symmetry restoration (CSR) change the flavor decomposition – more s-sbar pairs produced.

Droplets of QGP allow to interact s-sbar quarks and create more multi-strange (anti)-baryons.

- Presence of QGP significantly increase yield of Ω^+ at FAIR energy
- CSR effect increase yield of Ω^- and Ω^+ at ullet**FAIR** energy

Performance of the CBM track finder

- the interaction rate.

minimum bias : 6ms/core track finder, 1 ms/core particle finder

• For studies several theoretical models like UrQMD and PHSD are used. • Track finder is based on the Cellular Automaton method.

• High efficiency for track reconstruction of more then 92%, including fast (more then 90%) and slow (more then 65%) secondary tracks.

• Time-based track finder is developed, efficiency is stable with respect to

• Low level of split and wrongly reconstructed (ghost) tracks.

High rate scenario: event reconstruction with 4D tracking

4D Track Finder in CBMROOT

100 AuAu 10 AGeV mbias events

Efficiency, %	3D	0.1 MHz	1MHz	10 MHz
All tracks	92.5%	93.8%	93.5%	91.7%
Primary high-p	98.3%	98.1 %	97.9%	96.2%
Primary low-p	93.9%	95.4%	95.5%	94.3%
Secondary high-p	90.8%	94.6%	93.5%	90.2%
Secondary low-p	62.2%	68.5 %	67.6%	64.3%
Clone level	0.6%	0.6%	0.6%	0.6%
Ghost level	1.8%	0.6%	0.6%	0.6%
True hits per track	92%	93%	93%	93%
Hits per MC track	7.0	7.0	6.97	6.70

Timeslices from CBMROOT Timebased digitisation, cluster and hit finder

Particle identification with PID detectors

ToF: hadron identification

TRD: d-He separation

- r [cm]
- PID detectors:
- RICH (Ring Imaging CHerenkov detector) electron identification;

PID detectors of CBM will allow a clear identification of charged tracks.

RICH: electron identification

- ToF (Time of Filght) hadron identification;
- TRD (Transition Radiation detector) —
- electron and heavy fragments identification.

KF Particle Finder for the CBM Experiment

- More than 150 decays.
 All decays are reconstructed in one go.
- Based on the Kalman filter method - mathematically correct parameters and their errors.
- KF Particle Finder is
 successfully tested in STAR
 and allows to reconstruct up
 to 2 times more signal.
- STAR developments are fully merged with the KF Particle Finder repository.

Multi Strange particle reconstruction performance

5M central AuAu collisions 10AGeV/c

- CBM will allow clean reconstruction of rare strange probes with high efficiency and high statistics. •
- Tools for the **multi-differential physics analysis** are prepared.

Multi strange hyperons reconstruction with missing mass method 5M central AuAu collisions 10AGeV/c

- Comparable efficiencies, better control over the systematic errors
- Σ + and Σ physics: completes the picture of strangeness production

${}^{3}\Lambda H \rightarrow {}^{3}He \pi$	${}^4\Lambda\mathrm{H} \rightarrow {}^4\mathrm{He} \pi^-$	${}^{4}\Lambda \text{He} \rightarrow {}^{3}\text{He} \text{ p} \pi^{-}$		
d p π-	t p π-	d p p π-		
ppnπ-	d d π-	pppnπ-		
t π^0	³ He n π -	$^{4}\mathrm{He}~\pi^{0}$		
	ppnπ-	d d π^0		

CBM KFParticle Finder test @ STAR 4.4M Au+Au events sqrt(s) = 7.7

- CBM KF Particle Finder is successfully applied to the STAR data in a wide energy range.
- STAR data are excellent platform to test and improve our reconstruction software.

d to the STAR data in a wide energy range. approve our reconstruction software.

Testing CBM algorithms online: STAR express analysis

Maksym Zyzak, 33rd CBM Collaboration Meeting, Darmstadt

Tape The standard calibration, production and analysis remain unchanged. · Start the calibration procedure as soon as data become available. · Make possible physics analysis of the data as soon as the calibration is reasonable. Unify approaches in extended (x)HLT and online (o)RCF to speed up the express workflow. · Combine high competence of xHLT and oRCF experts involved in online operation. · Provide PWGs with instant and uncomplicated access to the data, like picoDST etc. xStorage Disk Production Tape StiCA Track Finder Disk **Physics** PWG Standard,

KF Particle, KF Particle Finder

Hypernuclei production in A+A collisions

- According to the current theoretical predictions CBM will be able to perform comprehensive study of hypernuclei, including:
 - precise measurements of lifetime;
 - excitation functions;
 - flow.
- It has a huge potential to register and investigate double Λ hypernuclei.

Expected collection rate: ~60 $^{6}_{\Lambda\Lambda}$ He in 1 week at **10MHz IR** (not day-1)

Day-1: Expected particle yields Au+Au @ 6, 10 AGeV

Particle (mass MeV/c²)	Multiplicity central ev. 6 AGeV	Multiplicity central ev. 10 AGeV	decay mode	BR	ε (%)	yield in 90 days 6AGeV	yield in 90 days 10 AGeV	IR MHz
Ā (1115)	5.1.10 ⁻³	0.041	<u></u> - 	0.64	19.7	1.2·10 ⁸	1.0-10 ⁹	0.1
Ξ ⁻ (1321)	0.11	0.36	Λπ-	1	9.9	2.0·10 ⁹	7.0-10 ⁹	0.1
Ξ+ (1321)	1.8-10 ⁻³	1.5-10 ⁻²	$\overline{\Lambda}\pi^+$	1	8.7	3.0-10 ⁷	2.5-10 ⁸	0.1
Ω ⁻ (1672)	6.8-10-4	4.4-10 ⁻³	ΛK⁻	0.68	4.4	4.0-10 ⁶	2.6-10 ⁷	0.1
Ω+ (1672)	1.4-10 ⁻⁵	2.6-10 ⁻³		0.68	3.9	7.0-10 ⁴ (0 w/o <mark>QGP?</mark>)	1.4-10 ⁷	0.1
³ ∧H (2993)	4.2-10 ⁻²	3.8-10 ⁻²	³ Heπ ⁻	0.25	12.7	2.7·10 ⁸	2.5-10 ⁸	0.1
⁴ ∧He (3930)	2.4-10 ⁻³	1.9-10 ⁻³	³ Hepπ ⁻	0.32	11.4	1.7·10 ⁷	1.4-10 ⁷	0.1
⁵ _{ΛΛ} He(5047)		5.0-10 ⁻⁶	³ He2p2π	0.01	3	15	250	0.1
⁶ _{ΛΛ} He(5986)		1.0-10 ⁻⁷	^₄ He2p2π	0.01	1.2			0.1

- CBM detector is an excellent device to measure not only bulk observables, but strangeness, hypernuclei and other rare probes with high statistic.
- The CBM experiment will provide multidifferential high precision measurements of strange hadrons including multi-strange (anti)-hyperons.
- High precision measurements of excitation functions of multi-strange hyperons in A+A collision with different mass ulletnumbers A at SIS100 energies have a discovery potential to find a signal for the onset of deconfinement in QCD matter at high net-baryon densities
- The discovery of (double-) Λ hypernuclei and the determination of their lifetimes will provide information on the hyperon-nucleon and hyperon-hyperon interactions, which are essential ingredients for the understanding of the nuclear matter EoS at high densities, and, hence, of the structure of neutron stars.

