

EUROPEAN UNION European Structural and Investment Funds

Operational Programme Research, Development and Education

INISTRY OF EDUCATION, YOUTH AND SPORTS Strangeness flow in Au+Au collisions at 1.23 AGeV measured with

Lukáš Chlad for HADES collaboration

Strange Quark Matter 2019 13. 6. 2019

Why is it interesting to study strangeness flow?

Kaon propagation and production in nuclear medium is affected by kaon-nucleon potential

Kaon flow is important test for models like HSD, IQMD, BUU...

Hight Acceptace Di-Electron Spectrometer

Fixed target experiment Toroidal magnetic field => Six sector design provides Full azimuthal coverage 18°-85° polar coverage

Very precise time and position measurement => Great hadron detector (as well as lepton – new ECAL)

Superfast DAQ (above 10kHz HIC)

Au+Au at 1.23 AGeV

Centrality Determination:

Selected 0-40% most central collisions

After additional event quality cuts => 2.1 billion Events

Excellent particle identification

This opens possibilities for very challenging analysis

Event Plane reconstruction and resolution

Event Plane is reconstructed from hits of charged projectile spectators registered in Forward Wall (big rapidity gap between FW and rest of HADES)

Kaon identification

same event pairs

mixed event pairs

m_{a'a'} [MeV/c²]

fit: exp + gaus

Two methods of flow analysis

K_{s}^{0} directed and elliptic flow

 v_1 is slowly rising with rapidity (towards forward rap.) No strong dependency of v_1 with centrality Slope of v_1 at midrapidity is positive (big errors)

v₂ is negative (out-of-plane) similar to pions

K⁺ directed and elliptic flow

 v_1 is slowly rising with rapidity (towards forward rap.) No strong dependency of v_1 with centrality Slope of v_1 at midrapidity is positive (big errors)

 v₂ is negative (out-of-plane) similar to pions
v₂ independent of rapidity and decreases with transverse momentum

Comparison to world results and models

Summary and Outlook

Differential analysis of kaon flow was presented Comparison with FOPI and KaoS data shows a good agreement Comparison between K_{s}^{0} and K^{+} shows good agreement

Study systematic uncertainty Detailed comparison with different models

NEW data from Ag+Ag @ 1.58 AGeV (FAIR-0 phase)

BACKUP

Acceptance and Reconstruction corrected phase-space distribution of kaons

We obtained similar number of both kaons (similar threshold) However the correction factors for neutral kaons are >100 and for positive kaons ~4