News on in-medium modifications of properties of kaons measured around threshold

Krzysztof Piasecki

Institute of Experimental Physics, Faculty of Physics, University of Warsaw

- Introduction to phenomenon
- Case of K^0_s from Au+Au @ 1.2A GeV
- Case of K^+ and K^- from Ni+Ni @ 1.9A GeV
- Summary & outlook
Partial restoration of chiral symmetry

- **QCD**: vacuum is not empty $\Rightarrow \bar{q}q$ condensate
- **Gell-Mann Oakes Renner relation**:

$$m_K^* f_K^* = \frac{-m_u + m_s}{2} \langle \bar{u}u + \bar{s}s \rangle + \Theta(m^2_s)$$

Decay constant
Mass

- **A good probe**:
 - a single, easily measurable particle emitted from heavy-ion collision zone.
- **Take Kaons**:
 - Threshold E_{kin} for $NN \rightarrow NK^+\Lambda$: 1.6 GeV
 - At a few AGeV usually *single* kaon emitted

Heavy-ion collisions: medium + probe
Changes of Kaon properties in medium

Approximate description: Potential

\[
m_K(\rho) = m_{K,\text{vac}} \left(1 \pm \alpha \frac{\rho}{\rho_0}\right)
\]

Effects induced by in-medium potential:

- As \(m_K \neq m_{\text{Vacuum}}\), production threshold changes
- As \(K^+, K^0\) escapes the collision zone:
 \[m_K \downarrow m_{\text{Vacuum}}\] Kaon gives energy to \(E_{\text{kin}}\) (speeds up)
- As \(K^-, \bar{K}^0\) escapes the collision zone:
 \[m_K \uparrow m_{\text{Vacuum}}\] Antikaon takes energy from \(E_{\text{kin}}\) (slows down)

Transport models – simple approaches

Hypothesis:

Mass effectively changes proportionally to the medium density

\[
m_K(\rho) = m_{K,\text{vac}} \left(1 \pm \alpha \frac{\rho}{\rho_0}\right)
\]

... or more advanced (eg. Chiral EFT w.CC \(\rightarrow\) HSD)

J. Schaffner-Bielich et al., NPA 625 (1997) 325
The φ meson: a hidden player

- φ (ss): $m = 1.02$ GeV
 $T_{\text{beam,threshold}} = 2.6$ GeV

- $c t = 50$ fm (in vacuum)
 $\phi \rightarrow K^+K^-$ (BR ~ 50%)

- IQMD Simulation
 Au+Au, $T_{\text{LAB}} = 1.5A$ GeV

First attempt to gain some knowledge on $\phi \rightarrow K^+K^-$: year 2003, 23 φ events

A. Mangiarotti et al. (FOPI), NPA 714, 81 (2003)
FOPI and HADES experimental setups @ GSI, Darmstadt

FOPI (FOur PI)

Spectrometer for charged particles

- CDC: momentum
- Plastic Barrel & MMRPC: Time-of-flight

HADES (High-Acceptance Di-Electron Spectrometer)

Adjusted to measure hadrons
Operating: currently

- MDC: momentum
- TOF & RPC: Time-of-flight

FOPI and HADES: Similar acceptance for Kaon measurements
Access to K^0_s via $K^0_s \rightarrow \pi^+ \pi^-$ (BR = 63%)
First tests: K^0 emitted from πA

π meson hits the nucleus:
possible single-step channels:
production of kaons at $\rho \approx \rho_0$.

$\pi^- p \rightarrow K^0\Sigma^0$, $\pi^- p \rightarrow K^0\Lambda^0$, $\pi^- n \rightarrow K^0\Sigma^-$

Comparison of two reactions (FOPI, 2009):

$\pi^- (p=1.15 \text{ GeV/c}) + ^{208}\text{Pb} \rightarrow K^0 + ...$
$\pi^- (p=1.15 \text{ GeV/c}) + ^{12}\text{C} \rightarrow K^0 + ...$

Ratio of momentum distributions of kaons:

Distribution for K^0 emitted from Pb shifted to higher momenta.

Comparison to HSD transport model:

- No potential
- $U_{KON} (q_0) = 10 \text{ MeV}$
- $U_{KON} (q_0) = 20 \text{ MeV}$
- $U_{KON} (q_0) = 30 \text{ MeV}$

Data in agreement if $U_{KON} (q_0) = +20 \text{ MeV}$
In-medium effects of K^0 from Au+Au @ 1.23A GeV

Comparing K^0 and Λ data to transport models with/without in-medium effects
(Basic production channel: $NN \rightarrow NK^0\Lambda$)

1. Multiplicity of K^0_s and Λ vs centrality:

 Transport calculations:
 - HSD $U_{KON}(q_0) = 40$ MeV
 - IQMD $U_{KON}(q_0) = 40$ MeV

 Absolute yield overstated by calculations. Large spread in yield between different models.
 - No scenario without in-medium potential reproduces the $<A_{part}>$ scaling.
 - Switching the potential on improves the description significantly!

J. Adamczewski–Musch et al. (HADES), PLB 793, 457 (2019)
2. Phase space distributions of K^0_s, 10% most central evts

Model curves were normalized to exp. data (comparison of profiles)

Again, best description with the in-medium effects.

J. Adamczewski–Musch et al. (HADES), PLB 793, 457 (2019)
In-medium effects of K^0 from Au+Au @ 1.23A GeV

2. Phase space distributions of Λ, 10% most central evts

Model curves were normalized to exp. data (comparison of profiles)

Legend

- UrQMD —— No potential
- IQMD —— No potential
- HSD —— No potential
- IQMD $U_{K0N}(\varrho_0) = 40$ MeV
- HSD $U_{K0N}(\varrho_0) = 40$ MeV

- Inclusion of in-medium effects for K^0_s does not affect Λ
- UrQMD describes the profile best.

J. Adamczewski–Musch et al. (HADES), PLB 793, 457 (2019)
$K^-/^+$ emitted from Ni+Ni collisions (recent data)

Ratio of K^- over K^+ from Ni+Ni @ 1.9A GeV, centrality 56%

New data (full dots)

- wide phase space coverage
- more statistics

KP et al. (FOPI), PRC 99, 014904 (2019)

... To be compared with Transport models

But ... what about ϕ mesons?

$\phi \rightarrow K^+K^- \ (BR \sim 50\%)$

For Al+Al @ 1.9A GeV see.:
P. Gasik et al (FOPI), EPJ A 52, 177 (2016)
Contribution of φ decays to K⁻ (recent data)

φ mesons from AA collisions @ 1.9A GeV

- Measured in K⁺K⁻ decay channel (BR = 50%) in 3 systems. Small samples (~150 events).

Result: φ/K⁻ = 0.36 ± 0.05

(In agreement with HADES data for Ar+KCl @ 1.76A GeV, G. Agakishiev et al., PRC 80 (2009) 025209)

Even higher φ/K⁻ ratio found by HADES for Au+Au @ 1.2A GeV, J. Adamczewski-Musch et al., PLB 778, 403 (2018)

- Since BR (φ → K⁺K⁻) ≈ 50%,

About 18% of K⁻ originates from decays of φ mesons, (different kinematics than for “direct”)

- Energy spectra of φ mesons Reconstructed and fitted in 2 cases.

K⁻ from φ decays: “colder” than these emitted directly from collision zone.

We can subtract contribution from K⁻ spectra, and obtain the K⁻/K⁺ ratio built by particles without the φ decay contribution

- Measured in K⁺+K⁻ decay channel (BR = 50%) in 3 systems. Small samples (~150 events).

K/Petel, PRC 91, 054904 (2015)

KP et al., PRC 94, 014901 (2016)
Ratio of K^-/K^+ (K$^-$ without ϕ contribution) from Ni+Ni @ 1.9A GeV, centrality 56%

$$K^{-}_{\text{Total}} = K^{-}_{\text{Direct}} + K^{-}_{\text{From } \phi}$$

$$K^{-}_{\text{Direct}} = K^{-}_{\text{Total}} - K^{-}_{\text{From } \phi}$$

Energy dependence still drops.
→ perhaps the K$^-$ modifications still non-negligible

... to be compared with Transport Models, in case if ϕ emission not well reproduced.

However, $\Lambda(1520) \rightarrow pK^-$ could be another player, (never measured @ $T_b < 10$A GeV)

See Dominika Wójcik’s Poster
Summary & Outlook

Modifications of kaon properties in medium are the result of **partial restoration of chiral symmetry**. Frequent parametrization: extra kaon-nucleus potential as function of density.

First tests: \(K^0_s \) emitted from \(\pi^-A \) : \(U_{KON}(q_0) \approx +20 \text{ MeV} \).

Recent analyses:

- **Case of** \(K^0_s \) (and \(\Lambda \)) **from Au+Au @ 1.23A GeV (HADES)**
 - Data: Yields against centrality, Pt-y spectra in wide acceptance.
 - Models: UrQMD (no in-medium), HSD & IQMD (no in-medium or \(U_{KON}(q_0) \approx 40 \text{ MeV} \))
 - Results: Yields of \(K^0_s \) and \(\Lambda \) : clear preference for in-medium scenario
 - \(K^0_s \) (\(p_t \) and rapidity profiles) : clear preference for in-medium scenario
 - \(\Lambda \) (\(p_t \) and rapidity profiles) : clear preference for UrQMD, for HSD, IQMD bad prediction in either scenario

- **Case of** \(K^- \) and \(K^+ \) **from Ni+Ni @ 1.9A GeV (FOPI)**
 - Data: Ratio of \(K^-/K^+ \) yields scanned across phase space (\(E_{\text{kin},NN} \) vs \(\cos \theta_{NN} \))
 - \(\phi \) : yields and \(\phi/K^- \) ratio against centrality, \(E_{\text{kin}} \) spectrum
 - Ratio of \(K^-/K^+ \) with \(\phi \) contribution removed
 - Ready to be compared to transport models
 - Possible new side feeding to \(K^- \) : \(\Lambda(1520) \). See Dominika Wójcik’s Poster!

OUTLOOK

- **New data on** Ag+Ag @ 1.58A GeV taken by HADES in march this year – stay tuned!
Backup slides
Relativistic heavy-ion collisions

IQMD simulation of Au+Au collision at $T_B = 1.5$A GeV

4 fm/c: onset of Δ (1232) production

8 fm/c: max. nucleon density ($2-3 \times \rho_0$)
10 fm/c: max. density of Δ
12 fm/c: max. density of π

20–30 fm/c: π multiplicity \rightarrow saturates
Δ multiplicity \rightarrow drops to 0

$T_{[\text{fm/c}]}$
0 10 20
0.3 1 2

Centr. dens. Q/Q_0

$1 \text{ fm/c} = 3.3 \cdot 10^{-23} \text{ s}$

W. Reisdorf et al., NPA 848, 366 (2010)

C. Hartnack, The nuclear equation of state is soft,
SQM 2006
ChPT Lagrangian

C. Fuchs / Progress in Particle and Nuclear Physics 56 (2006) 1–103

on this framework has been used by many other authors [8,12,29–38]. The corresponding chiral SU(3)$_c \times$ SU(3)$_F$ Lagrangian used by Kaplan and Nelson reads

\[
\mathcal{L} = \frac{1}{4} f^2 \text{Tr} \epsilon^{\mu\nu\rho\sigma} \partial_\mu A_\nu \partial_\rho A_\sigma + \frac{1}{2} f^2 A (\text{Tr} M_q (\Sigma - 1) + \text{h.c.}) + \text{Tr} \bar{B} (ig^{\mu\nu} \partial_\mu - m_B) B
\]

\[
+ \text{Tr} \bar{B} \gamma^\mu [V_\mu, B] + D \text{Tr} \bar{B} \gamma^\mu \gamma^5 (A_\mu, B) + F \text{Tr} \bar{B} \gamma^\mu \gamma^5 (A_\mu, B)
\]

\[
+ a_1 \text{Tr} B (\xi M_q \xi + \text{h.c.}) B + a_2 \text{Tr} \bar{B} B (\xi M_q \xi + \text{h.c.})
\]

\[
+ a_3 (\text{Tr} M_q \Sigma + \text{h.c.}) \text{Tr} \bar{B} B.
\]

The degrees of freedom in the Lagrangian (1) are the baryon octet B

\[
B = \begin{pmatrix}
\frac{A}{\sqrt{6}} + \frac{\Sigma^0}{\sqrt{2}} & \Sigma^+ & p \\
\Sigma^- & \frac{A}{\sqrt{6}} - \frac{\Sigma^0}{\sqrt{2}} & n \\
\Xi^- & \Xi^0 & \frac{2}{\sqrt{6}} A
\end{pmatrix}
\]

(2)

with a degenerate mass m_B, and the pseudoscalar meson octet ϕ

\[
\phi = \sqrt{2} \begin{pmatrix}
\frac{\eta_8}{\sqrt{6}} + \frac{\pi^0}{\sqrt{2}} & \pi^+ & K^+
\\n\pi^- & \frac{\eta_8}{\sqrt{6}} - \frac{\pi^0}{\sqrt{2}} & K^0
\\K^- & K^0 & -2 \frac{2}{\sqrt{6}} \eta_8
\end{pmatrix}
\]

(3)

entering into the chiral pseudoscalar meson fields

\[
\Sigma = \exp(2i\phi/f_\pi) \quad \text{and} \quad \xi = \sqrt{\Sigma} = \exp(i\phi/f_\pi).
\]

(4)

The pseudoscalar meson decay constants are equal in the SU(3)$_V$ limit and given by the weak pion decay constant $f_\pi \simeq 93$ MeV. The current quark mass matrix which is responsible for explicit chiral symmetry breaking is given by

\[
M_q = \begin{pmatrix}
m_q & 0 & 0 \\
0 & m_q & 0 \\
0 & 0 & m_\tau
\end{pmatrix}
\]

RMF Lagrangian

2. The RMF model

It has been demonstrated by many studies that the RMF model gives a good description of nuclear matter in bulk as well as of properties of nuclei [27,28]. We start from the Lagrangian

\[
\mathcal{L} = \bar{\Psi}_N (ig^\mu \partial_\mu - m_N) \Psi_N + \frac{1}{2} \partial^\mu \sigma \partial_\mu \sigma - U(\sigma)
\]

\[
- \frac{1}{2} G^{\mu\nu} G_{\mu\nu} + \frac{1}{2} m_\sigma^2 V^\mu V_\mu - \frac{1}{4} B^{\mu\nu} B_{\mu\nu} + \frac{1}{4} m_R^2 R^\mu R_\mu
\]

\[-g_{\sigma N} \bar{\Psi}_N \Psi_N \sigma - g_{\omega N} \bar{\Psi}_N \gamma^\mu \omega_\mu \Psi_N - g_{\rho N} \bar{\Psi}_N \gamma^\mu \rho_\mu \Psi_N, \]

(1)

where the nucleons interact via an attractive scalar (σ) and repulsive vector (V^μ, R^μ) meson fields. The term $U(\sigma)$ stands for the scalar self-interaction

\[
U(\sigma) = \frac{1}{4} m_\sigma^2 \sigma^2 - \frac{b}{3} \sigma^3 + \frac{c}{4} \sigma^4
\]

(2)

The implementation of Λ hyperons proceeds through the additional Lagrangian

\[
\mathcal{L}_\Lambda = \bar{\Psi}_\Lambda (ig^\mu \partial_\mu - m_\Lambda) \Psi_\Lambda - g_{\sigma \Lambda} \bar{\Psi}_\Lambda \Psi_\Lambda \sigma - g_{\omega \Lambda} \bar{\Psi}_\Lambda \gamma^\mu \omega_\mu \Psi_\Lambda.
\]

(4)

3.1. One-boson-exchange approach

In the kaon sector, we start from the following Lagrangian [13]:

\[
\mathcal{L}_{KN} = D_\mu \bar{K} D^\mu K - m_k^2 \bar{K} K - g_{\omega K} m_k \bar{K} K \sigma - g_{\delta K} m_k \bar{K} \tau \delta
\]

(15)

with the covariant derivative

\[
D_\mu = \partial_\mu + ig_{\omega K} V_\mu + ig_{\delta K} \tau R_\mu.
\]

(16)
K_0^s and Λ production from Au+Au @ 1.23A GeV

χ^2/ndf between data and model prediction

<table>
<thead>
<tr>
<th>Model</th>
<th>KN potential</th>
<th>K_0^s</th>
<th>Λ</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>UrQMD</td>
<td>no</td>
<td>p_t</td>
<td>y</td>
<td>Mult</td>
</tr>
<tr>
<td></td>
<td></td>
<td>105</td>
<td>4.1</td>
<td>1619</td>
</tr>
<tr>
<td>HSD</td>
<td>yes</td>
<td>7.0</td>
<td>2.7</td>
<td>670</td>
</tr>
<tr>
<td>IQMD</td>
<td>yes</td>
<td>6.0</td>
<td>2.0</td>
<td>99</td>
</tr>
</tbody>
</table>
Strangeness production and absorption

<table>
<thead>
<tr>
<th></th>
<th>K⁺</th>
<th>K⁻</th>
<th>φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production (primary)</td>
<td>BB → BYK⁺</td>
<td>BB → BBK⁺K⁻</td>
<td>BB → BBφ</td>
</tr>
<tr>
<td></td>
<td>(T_{pp \rightarrow p\Lambda K⁺} = 1.58 \text{ GeV})</td>
<td>(T_{pp \rightarrow ppK⁺K⁻} = 2.5 \text{ GeV})</td>
<td>(T_{pp \rightarrow ppK⁺K⁻} = 2.6 \text{ GeV})</td>
</tr>
<tr>
<td>Production (secondary)</td>
<td>(\pi B \rightarrow Y K⁺)</td>
<td>(\pi Y \rightarrow (\Sigma^* \rightarrow) BK⁻)</td>
<td>(\pi B \rightarrow B φ)</td>
</tr>
<tr>
<td></td>
<td>(BY \rightarrow NK⁻Λ)</td>
<td>(\rho B \rightarrow B φ)</td>
<td>(\rho \pi \rightarrow \phi)</td>
</tr>
<tr>
<td></td>
<td>(BY \rightarrow BBK⁻)</td>
<td>(\pi N^* \rightarrow N φ)</td>
<td>(K⁺K⁻ \rightarrow \phi) negligible</td>
</tr>
<tr>
<td>Absorption</td>
<td>K⁺Y → πB</td>
<td>K⁺B → πY</td>
<td>φN → KΛ</td>
</tr>
<tr>
<td>Elastic scat. (char. exch.)</td>
<td>K⁺B ↔ K⁺ B</td>
<td>K⁻B ↔ K⁻B</td>
<td>φN → φN</td>
</tr>
<tr>
<td></td>
<td>K⁺n ↔ K₀ρ</td>
<td>K⁻p ↔ K₀n</td>
<td>([B] = \rho, n, N, N^*, \Delta)</td>
</tr>
<tr>
<td></td>
<td>([Y] = \Lambda, \Sigma)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sub- and near-threshold Production of K^-

- in medium: mainly strangeness exchange:
 \[BY \rightarrow NNK^-, \quad \pi Y \rightarrow K^-B \]
 - strong reabsorption: $K^-B \rightarrow \pi Y$
 - coupled to resonances $\Sigma(1385), \quad \Lambda(1405)$

\[\pi + Y \rightarrow \Sigma^* \rightarrow K^- + B \]

Q: Can we see them?

\[\text{Au+Au @ 1.5A GeV (IQMD transport code)} \]

\[\begin{align*}
 &\text{dN/dt} \times 10^{-3} \\
 t (\text{fm/c}) &
 \begin{align*}
 &\pi K^- \rightarrow \pi Y \\
 &BY \rightarrow NNK^- \\
 &\pi Y \rightarrow NK^- \\
 &\pi B \rightarrow BK^-K^- \\
 &BB \rightarrow BBK^-K^-
 \end{align*}
\end{align*} \]

\[N(t) \\
 t (\text{fm/c}) \]

\[\begin{align*}
 &\text{total} \\
 &\text{from BY} \\
 &\text{from } \pi Y \\
 &\text{from } \pi B \\
 &\text{from BB}
 \end{align*} \]
Observable: Ratio of K^- / K^+ kinetic energy spectra

First findings: FOPI, KaoS @ SIS18 accelerator, GSI Darmstadt

Effect itself appears to be confirmed…

…but probed within very narrow slice of phase space

Statistics too limited for providing uncertainties of extracted U_{KN}.

K\textasciitilde K^+: experiment vs transport

• K^+: U_{K^N} repulsive
K^-: $U_{K^N} \sim$attractive
K^-/K^+: promising observable

• IQMD transport code
 \[m_{K^\pm}(\rho) = m_{K^\pm}(\rho_0) \cdot \left(1 + \alpha_{\pm} \cdot \frac{\rho}{\rho_0}\right) \]
 at $\rho = \rho_0$
 $\Delta m_{K^+} = 40$ MeV, $\Delta m_{K^-} = -100$ MeV

• HSD transport code
 \(K^+ \) as in IQMD
 \(K^- \): off-shell G-matrix approach

\[m_{K^\pm}(\rho_0) = m_{K^\pm}(\rho_0) \cdot \left(1 + \alpha_{\pm} \cdot \frac{\rho}{\rho_0}\right) \]

Clear preference for $U_{K^N} \neq 0$ option
"U_{K^+} only" scenario: insufficient
IQMD: potentials used probably too strong

Al+Al @ 1.93A GeV, 9% most central events

(P. Gasik)

HSD, $U_{K^+} = 40$ MeV, K^- Not Modified
HSD, $U_{K^+} = 40$ MeV, $U_{K^-} = G$-Matrix
IQMD, $U_{K^+} = 40$ MeV, $U_{K^-} = -100$ MeV
In-medium effects of K^0 from Ar+KCl @ 1.76A GeV

Transverse momentum distributions of K^0_s

\[\times 10^6 \]

\[\begin{align*}
-0.07 < y_{\text{c.m.}} < 0.07 & \quad \text{data} \\
0.07 < y_{\text{c.m.}} < 0.20 & \quad \text{with pot} \\
0.20 < y_{\text{c.m.}} < 0.33 & \quad \text{w/o pot} \\
0.33 < y_{\text{c.m.}} < 0.47 & \quad \text{data} \\
0.47 < y_{\text{c.m.}} < 0.60 & \quad \text{with pot} \\
\end{align*} \]

\[p_t \text{ [MeV/c]} \]

\[\begin{align*}
0 < 200 < 400 < 600 < 800 & \quad \text{data} \\
0 < 200 < 400 < 600 < 800 & \quad \text{with pot} \\
\end{align*} \]

- Densities reached: $2 \rho_0$
- $K_S^0 \quad c\tau = 2.7 \text{ cm}$
- $K_L^0 \quad c\tau = 15.3 \text{ m}$

- IQMD transport calc.:
 - No potential
 - $U_{KON}(\rho_0) = 46 \text{ MeV}$

Obtained $U_{KON}(\rho_0)$ for Ar+KCl seems to be stronger than in case of $U_{KON}(\rho_0)$ for $\pi^- A \rightarrow K^0 + ...$

(1) Non-linear dependency of $U_{KON}(\rho)$? (2) Momentum-dependent potential?
K^0 emitted from nucleus (new data)

K^0_s mesons from p ($T_B = 3.5$ GeV) + Nb. Phase space distributions ($p_T - y$):

Comparison to GiBUU transport model. The ChPT potential was used; for first time $U = f(p)$
Effect of ϕ decays on K^- slopes

Previously:
Difference of K^+,K^- slopes explained by U_{KN} potentials

Present studies:
About 50% can be explained by $\phi \to K^+K^-$ decays
Observable: azimutal angle distribution ("Flow")

Azimuthal angle distribution wrt Reaction Plane
After $(p_T - y)$, ϕ is a 3rd phase space dimension.

Directed Flow v_1
Elliptic Flow v_2

Azimuthal distribution is decomposed into Fourier series:

$$\frac{dN}{d\phi} \sim 1 + 2v_1\cos\phi + 2v_2\cos(2\phi) + \ldots$$

$v_1, v_2, \ldots = \text{Coefficients of Fourier expansion ("flow coefficients")}$

Mass change effect: wrt. flow of matter (usually protons), K^- should flow more like protons do, K^+ should flow more against.

C. Pinkenburg et al., PRL 83, 1295 (1999)
Observable: azimutal angle distribution (Flow)

First findings: FOPI & KaoS

- **KaoS analysis:**
 - Fit to $dN/d\phi (K^+)$ for 2 systems at 1 – 2A GeV
 - Preference for U_{K^+N}
 - No information on U_{K^-N}

- **FOPI analysis:**
 - $n_1 (K^+)$ as function of p_T for 2 systems at 1.5 – 2A GeV
 - Preference for $U_{K^+N} \approx 20$ MeV
 - No information on U_{K^-N}

Fragmentary insight, coarse results
In-medium $K^+/-$ modifications via Flow: current status

Flow of K^+ and K^- emitted from Ni+Ni @ 1.9A GeV

Centrality 56%

IQMD

$U_{K^+N} = +20$ MeV
$U_{K^-N} = -45$ MeV

0 MeV

HSD

$U_{K^+N} = +20$ MeV
$U_{K^-N} = -50$ MeV

0 MeV

v_1: Rather weak U_{K^+N} potential.
Preference for $U_{K^-N} \approx -25..50$ MeV
Production of Kaons in AA: Primary or secondary?

If primary:

For pA → KX: \[MUL_K = \frac{\sigma_K}{\sigma_{inelastic}} = \text{const} \]

AA → KX: Glauber: \[AA = A \otimes NA \]

\[\Rightarrow MUL_K^{AA} = A \times MUL_K^{pA} \propto A \]

KaoS

\[K^+, 1.5 \text{ AGeV} \times 10^{-4} \]
\[K^+, 1.0 \text{ AGeV} \times 10^{-5} \]
\[K^+, 0.8 \text{ AGeV} \times 10^{-6} \]
\[K^+, 1.5 \text{ AGeV} \times 10^{-1} \]

C+C \quad Ni+Ni \quad Au+Au

secondary processes are involved

K^0 near-threshold production processes:

- \(N_{\text{beam}} + N_{\text{target}} \), \(N_{\text{target}} \) has Fermi motion
- predominantly via \(\Delta N, \Delta \Delta \rightarrow K^{+,0} Y B \)
- \(\pi N, \pi \Delta \rightarrow K^{+,0} Y \), \(Y = [\Lambda, \Sigma] \)
- \(U_{KN} \) involved (increases K mass → lower yields)
Search for in-medium modifications of K^-

K^+, K^- and ϕ emitted from Ar + KCl @ 1.76A GeV: phase space distributions

\[m_T = \sqrt{p_T^2 + m^2} \]

Boltzmann Fit to phase space distributions

inverse slope ("temperature")

\[\frac{1}{m_T^2} \frac{d^2 N}{dm_T dy} = C(y) \exp \left[-\frac{(m_T - m_0) \ ch y}{T} \right] \]

Inverse slope for K^+ is higher than that for K^-.

(\leftrightarrow ratio of kinetic energy distributions of K^- to K^+ drops with energy) :

\[T_{\text{eff}} \]

<table>
<thead>
<tr>
<th>Particle</th>
<th>Multiplicity/LVL1</th>
<th>T_{eff}</th>
</tr>
</thead>
<tbody>
<tr>
<td>K^-</td>
<td>$(7.1 \pm 1.5 \pm 0.3 \pm 0.1) \cdot 10^{-4}$</td>
<td>$69 \pm 2 \pm 4$</td>
</tr>
<tr>
<td>K^+</td>
<td>$(2.8 \pm 0.2 \pm 0.1 \pm 0.1) \cdot 10^{-2}$</td>
<td>$89 \pm 1 \pm 2$</td>
</tr>
<tr>
<td>ϕ</td>
<td>$(2.6 \pm 0.7 \pm 0.1^{+0.0}_{-0.3}) \cdot 10^{-4}$</td>
<td>84 ± 8</td>
</tr>
</tbody>
</table>

Q: Is it due to in-medium effects or $\phi \rightarrow K^-$ feeddown?
Two-source model of K^- emission

Assumptions:

1. Observed K^- originate from two sources:
 - directly from collision zone ("direct")
 - feeddown from ϕ meson decays, $\phi \rightarrow K^+ K^-$ (BR $\approx 50\%$) in a proportion as measured experimentally.

2. "Direct" K^- have the same "temperature" as K^+.

3. ϕ mesons are emitted with "temperature" as measured.
 Next, ϕ decay into K^+ and K^- (PLUTO simulation).

4. We combine K^- distributions from both sources – and check the "temperature" of total.

Result: $T(K^-, \text{total}) = 74 \text{ MeV}$

Let’s compare to experimental $T(K^-)$:

<table>
<thead>
<tr>
<th>Particle</th>
<th>T_{eff}</th>
</tr>
</thead>
<tbody>
<tr>
<td>K^-</td>
<td>$69 \pm 2 \pm 4$</td>
</tr>
<tr>
<td>K^+</td>
<td>$89 \pm 1 \pm 2$</td>
</tr>
<tr>
<td>ϕ</td>
<td>84 ± 8</td>
</tr>
</tbody>
</table>

ϕ admixture strongly "cools down" the K^- spectrum.

It contributes to generating a drop of ratio of K^-/K^+ kinetic energy distribution with energy.

We cannot reject that ϕ (and not in-medium) Could be the only responsible for $K^-/K^+ \downarrow E_{\text{kin}}$...
2-source model of ϕ emission

- Al+Al @ 1.9A GeV (FOPI)

Experiment:

<table>
<thead>
<tr>
<th>Particle</th>
<th>T_{eff}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>82 ± 7 ± 11</td>
</tr>
<tr>
<td></td>
<td>109 ± 2 ± 9</td>
</tr>
<tr>
<td></td>
<td>93 ± 14 ± 16</td>
</tr>
</tbody>
</table>

$T (K^- \text{ from } \phi) = 58 \text{ MeV}$

$T (K^- \text{ direct}) = 92 \pm 16 \text{ MeV}$

ϕ contribution to K^-: indication that $T_{\text{direct}} @ \sim 10 \text{ MeV above } T_{\text{inclusive}}$
Ni+Ni @ 1.9A GeV (FOPI, KaoS)

Experiment:

<table>
<thead>
<tr>
<th>Particle</th>
<th>T_{eff}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>84 ± 4</td>
</tr>
<tr>
<td></td>
<td>108 ± 5</td>
</tr>
<tr>
<td></td>
<td>106 ± 18 ± 16</td>
</tr>
</tbody>
</table>

ϕ contribution to K^-: indication that T_{direct} @ ~10 MeV above $T_{\text{inclusive}}$
φ yield – BUU predictions

- **BUU** calculations for Ni+Ni @ 1.93A GeV, 9% most central collisions

- **φ** production channels:

 \[
 \begin{align*}
 &BB \rightarrow \phi, \quad B = \{N, \Delta\} \\
 &\mu B \rightarrow \phi, \quad \mu = \{\pi, \rho\} \\
 &\pi \rho \rightarrow \phi \\
 &K^+K^- \rightarrow \phi \quad \text{negligible}
 \end{align*}
\]

Table:

<table>
<thead>
<tr>
<th>Yields from Ni + Ni (1.93 GeV)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B + B</td>
<td>3.5 x 10^{-4}</td>
</tr>
<tr>
<td>π + B</td>
<td>2.9 x 10^{-4}</td>
</tr>
<tr>
<td>ρ + B</td>
<td>8.9 x 10^{-4}</td>
</tr>
<tr>
<td>π + ρ</td>
<td>1.6 x 10^{-4}</td>
</tr>
<tr>
<td>π + N(1520)</td>
<td>0.5 x 10^{-4}</td>
</tr>
<tr>
<td>Total yield</td>
<td>1.7 x 10^{-3}</td>
</tr>
</tbody>
</table>

φ yield compared to K⁻

- $\tau = 50$ fm
- $\phi \rightarrow K^+K^-$ (BR ~ 50%)
- $\frac{\phi}{K^-} \approx \frac{1}{3}$
- ~ 15 .. 20% K⁻ originates from ϕ decays

UrQMD model

Resonance states in medium:

- $N^* \rightarrow N + \phi$

Graphs:

- HADES preliminary
- UrQMD, Au+Au central, $|y|<0.5$
- Data

Preliminary

- Production threshold
- in elementary p+p
ϕ/K^- within the statistical model approach

\[\frac{\phi}{K^-} \]

\[\sqrt{S_{NN}} \text{ (GeV)} \]

G. Agakishiev et al., PRC 80, 025209 (2009)
Excitation function of ϕ inverse slopes
Particle yields vs Statistical Model and UrQMD

- **Al+Al**: 8 independent ratios involving p, d, π^-, K^+, K^-, K^0_s, ϕ, K^{*0}, Σ^*, Λ

- **Ni+Ni**: 8 independent ratios involving p, d, π^+, π^-, K^+, K^-, K^0_s, ϕ, Λ

Statistical Model
- Grand Canonical ensemble;
- For $S \neq 0$, Canonical ensemble
- calc: THERMUS code

 SM fitting quite well

UrQMD v 2.3
- No equilibration assumed
- Cascade model – no mean field
 - no in-medium effects

 UrQMD fits quite well too

Al+Al

- $\chi^2/\nu = 5.0/5$
- $T = 72 \pm 3$ MeV
- $\mu_B = 738 \pm 10$ MeV

Ni+Ni

- $\chi^2/\nu = 7.9 / 6$
- $T = 68.5 \pm 11.8$ MeV
- $\mu_B = 758 \pm 10$ MeV
Λ(1520) baryon: another player?

Λ(1520): BR (Λ → pK⁻) = 22.5%.
Emission of this particle at \(T_B < 10A \) GeV never observed!

Thermal model: estimation of yield
For Ni+Ni @ 1.9A GeV (THERMUS code, canonical ensemble for strangeness production),

Step 1: Fit of thermal parameters (\(T, \mu_B \)) to the experimental data.

\[
\chi^2/\nu = 7.3 / 4
\]

\[
T = 76.1 \pm 0.5 \text{ MeV}
\]

\[
\mu_B = 821 \pm 1 \text{ MeV}
\]

\[
R_c = 2.1 \pm 0.1 \text{ fm}
\]

Step 2: estimation of Λ(1520) yield compared to K⁻:

\[
\frac{P(\Lambda^*)}{P(K^-)} = 0.46
\]

\[
\frac{P(\Lambda^* \rightarrow K^-)}{P(K^-)} = 10\%
\]

Contribution of \(\Lambda^* \) to \(K^- \) seems to be non-negligible...
Strange meson excitation functions near threshold

![Graph showing strange meson excitation functions near threshold.](image)

In-medium KN potential: Quest for kaonic clusters

- KN interaction is strongly attractive!
 \(\Lambda(1405) \) is \((K^- p)\) bound state.

Consequence of strong attraction: Shrinking!

\[
K^- p \rightarrow \Lambda(1405)
\]

but:

\[
\Lambda(1405) \rightarrow \Sigma + \pi
\]
\[
\Sigma \rightarrow p + \pi^0, n + \pi^\pm
\]

Not seen in FOPI.

\[
K^- pp \rightarrow \Lambda + p
\]
\[
ppnK^- \rightarrow \Lambda + d
\]

A.Dote et al., PRC70,044313(2004)

Excess observed in Ni+Ni and Al+Al with statistical significance of ~ 5.
Yield located in spectator/fireball interface region (like non-strange clusters).
Peak position in variance with FINUDA result.
Interpretation unclear: \(\Sigma N \rightarrow \text{FSI} \),
bound state (H1\(^+\)),
partial inv. mass of heavier state (e.g. \(^4_\Lambda \text{He} \)).

FINUDA @ DaΦne:

\[e^+e^- \rightarrow \Phi \rightarrow K^+K^- \]
\[K^- + A \rightarrow (ppK) + X \rightarrow \Lambda + p + X \]

M. Agnello et al., PRL 94, 212303 (2005)

FINUDA

\[\Lambda p : \text{invariant mass} \]

\[M. \text{Reithner, HK 12.3} \]

\[\Lambda p : \text{Al+Al} \]

\(S = 1735 \pm 480 \)
\(S/B = 0.015 \pm 0.005 \)
\(\text{SIGNIF} = 5 \pm 1.4 \)
\(\text{MEAN} = 2.121 \pm 0.01 \text{ MeV/c}^2 \)
\(\sigma = 25 \pm 6 \text{ MeV/c}^2 \)

\[\Lambda p : \text{Ni+Ni} \]

\(S = 1342 \pm 350 \)
\(S/B = 0.022 \pm 0.006 \)
\(\text{SIGNIF} = 5.4 \pm 1.4 \)
\(\text{MEAN} = 2.14 \pm 0.01 \text{ MeV/c}^2 \)
\(\sigma = 25 \pm 8 \text{ MeV/c}^2 \)
Chiral effective field theory w/ coupled-channels

- \(K^- \) production in medium \((\pi Y \rightarrow K^- N)\) coupled to strange resonances e.g. \(\Sigma^*(1385) \), \(\Lambda^*(1405) \):
 \[
 (\pi \Lambda \rightarrow \Sigma^* \rightarrow K^- N)
 \]

- \(\Sigma^* \) resonance found in HI collisions
 Input to fix \(\pi + \Lambda \rightarrow K^- + N \) in medium

Al+Al @ 1.9A GeV

\[
\Sigma^{\pm*}(1385) \rightarrow \Lambda + \pi^\pm \quad (88 \pm 2\%)
\]

\[
\rightarrow p + \pi^-
\]

\[
\Lambda \pi^- + \Lambda \pi^+
\]

\[
\frac{Y(\Sigma^{*\pm} + \Sigma^{**})}{Y(\Lambda + \Sigma^0)}
\]

<table>
<thead>
<tr>
<th>Model</th>
<th>FOPI</th>
<th>Statist. Model</th>
<th>UrQMD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.125 ± 0.042</td>
<td>0.097</td>
<td>0.177</td>
</tr>
</tbody>
</table>

\[S = 3115 \pm 480 \]
\[S/B = 0.03 \pm 0.01 \]
\[\text{SIGNIF} = 9.1 \pm 1.4 \]
\[\text{MEAN} = 1387 \pm 5 \text{MeV/c}^2 \]
\[\Gamma = 51 \pm 13 \text{MeV/c}^2 \]

\[X. \text{Lopez et al. (FOPI)}, \text{PRC 76, 052203(R)} (2007) \]
In-Medium $\Sigma^*(1385)$

Chiral unitary theory

$\Sigma^*(1385) \rightarrow \Lambda(\Sigma) + \pi$ at $\rho=\rho_0$

$c\tau = 5$ fm

$\Gamma = -2\text{Im}[\Sigma]\Sigma^*(1385) = 76$ MeV

Mass:

$V_{\Sigma^*N} \approx -45$ MeV (attractive)

$\Sigma^*(1385) \rightarrow \Lambda(\Sigma) + \pi$ at $\rho=\rho_0$

$\Gamma = -2\text{Im}[\Sigma]\Sigma^*(1385) = 76$ MeV

Mass:

$V_{\Sigma^*N} \approx -45$ MeV (attractive)

FOPI expt. data

PDG mass ($\rho = 0$)

short lifetime \rightarrow Σ^* should probe finite density!

Γ broadening not yet observed (more statistics...)

Need to measure with heavier system

Need to include spectral function in transport codes

X. Lopez et al., PRC 76, 052203(R) (2007)
HADES: FAIR Phase 0 Experiment

HADES monitoring
Ag+Ag 1.58A GeV

Date: 01 April 2019
Event rate: 16-18 kHz
Collected events: 15268.68 \times 10^6
Collected data: 359.23 TB
Last update: 6:00

Event Display
Run statistics

PID: Velocity vs Momentum - TOF
\(\beta = \frac{v}{c} \)

\(p \times q \) (MeV/c)

\(e^+ / e^- \) Cherenkov Rings

Online Hyperons: \(\Lambda \rightarrow p + \pi^- \)

https://web-docs.gsi.de/~webhades/onlineMon/mar19/hades-online.html