Λ polairzation in Au*AU
 colusions at $\sqrt{s}_{N N}=2.4 \mathrm{GeV}$

MEasuiza WIfH

TADEE

Frederic Komas
for the HADES collabomation
Strange Quark Matter 2019

Polarization measurement

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Global Polarization Measurement:

> System created in high-energy HICs successfully described by relativistic hydrodynamics.
$>$ In peripheral collisions: $|L| \sim 10^{5} \hbar$
> What is the effect on fluid/transport?

$$
\text { Vorticity: } \vec{\omega}=\frac{1}{2} \vec{\nabla} \times \vec{v}
$$

$>$ Vorticity could be very high $\boldsymbol{\omega} \approx \mathbf{1 0}^{\mathbf{2 1}} \mathrm{s}^{\mathbf{- 1}}$

How to measure the vorticity?

> Large orbital momentum \Rightarrow Polarization of the particle spins
\rightarrow Two contributions:

1. Spin-orbit coupling (same for q and \bar{q})
2. Electromagnetic coupling (opposite for for q and \bar{q})

Magnetic field effect on photon production, V.Skokov, Western Michigan University,2014

Polarization measurement

How to measure the particle spin?

STAR Collaboration (Abelev et al.) Phys.Rev. C76 (2007)
$>$ Spin measurement for most of the hadrons very difficult
\rightarrow Concentrate on self-analyzing weak decays
> Good candidate:

$$
\Lambda \rightarrow p+\pi^{-}
$$ in the Λ rest frame

$>$ Proton is predominantly emitted in spin direction!
$>$ Spin measurement \rightarrow Momentum measurement

Polarization can be measured:

$$
P_{\Lambda}=\frac{8}{\pi \alpha_{\Lambda}} \frac{\left\langle\sin \left(\Psi_{E P}-\phi_{p}^{*}\right)\right\rangle}{R_{E P}}
$$

$>$ Decay parameter $\alpha_{\Lambda}=0.642 \pm 0.013$
$>$ Orientation with respect to the event plane $\Psi_{E P}$
$>$ Azimuthal angle of the proton in the Λ frame ϕ_{p}^{*}

High Acceptance DiElectron Spectrometer

Fixed-target experiment

Fast detector: 8 kHz trigger rate for $\mathrm{Au}+\mathrm{Au}$
High acceptance: full azimuthal coverage, $18-85^{\circ}$ polar angle

High Acceptance DiElectron Spectrometer

$\mathrm{Au}+\mathrm{Au}$ run at $\sqrt{s}_{N N}=2.4 \mathrm{GeV}$
$>$ Overall: $2.4 \cdot \mathbf{1 0}^{\mathbf{9}}$ events analyzed

Fixed-target experiment
Fast detector: 8 kHz trigger rate for $\mathrm{Au}+\mathrm{Au}$
High acceptance: full azimuthal coverage, $18-85^{\circ}$ polar angle

Centrality Estimation

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Offline centrality selection based on hit or track multiplicity

Event Plane Reconstruction

Event Plane Reconstruction:

$>$ Based on hits of charged projectile spectators in the Forward Wall

$>$ Based on method by J.-Y. Ollitrault (arXiv:nucl-ex/9711003)

Analysis procedure

TECHNISCHE UNIVERSITATT
DARMSTADT

$$
P_{\Lambda}(\text { centrality })=\frac{\mathbf{8}}{\pi \alpha_{\Lambda}} \frac{\left\langle\boldsymbol{\operatorname { s i n }}\left(\Psi_{E P}-\phi_{p}^{*}\right)\right\rangle}{R_{E P}}
$$

ϕ_{ρ}^{*} : Azimuthal angle of the proton in the Λ rest frame
\Rightarrow Particle identification

$$
\beta=\frac{p}{m} \frac{1}{\sqrt{\left(\frac{p}{m}\right)^{2}+1}}
$$

Observables:

$>$ Velocity
> Momentum
> Energy Loss
$>$ RICH information

Particle Identification

Decay Topology

> Simulations: Thermal $\Lambda \mathbf{n}$ embedded into real data (1Λ per event)
> Mixed-event method on real data to describe the background

> Enough statistics very crucial for the polarization analysis (Hard-cut analysis removes a lot of the signal)

- Employ neural network in order to gain more statistics!

Neural Network Analysis

TECHNISCHE
UNIVERSITÄT
DARMSTADT
Toolkit for Multivariate Data Analysis (TMVA) included in ROOT (https://root.cern.ch/tmva)

Input

Background:

Signal:

Thermal Λ s embedded into real data

Mixed-Event -
π^{-}from one event and
p from another event

Input Parameters

Topological parameters: $d_{v}, d_{1}, d_{2}, d_{3}, d_{t}$
In addition: $m_{\pi}, m_{p}, p_{\Lambda} \longleftarrow$ significant increase of the efficiency

Training
Convergence of the weights for maximal descrimination between signal and background!

Required output

Signal: $D_{\text {ideal }}=1 \longleftrightarrow$ Background: $D_{\text {ideal }}=0$
Actual Output: $0<D_{\text {real }}<1$

Neural Network Analysis

TECHNISCHE
UNIVERSITÄT
DARMSTADT
Toolkit for Multivariate Data Analysis (TMVA) included in ROOT (https://root.cern.ch/tmva)

> In real data (same event) the signal fraction is much lower:

$$
\sum S \ll \sum B
$$

$>$ Vary D to find the ideal cut value (i.e. with maximum significance) $\boldsymbol{D}_{\text {min }}=0.9$

Invariant mass distribution

„Hard cut" analysis:

$$
\begin{aligned}
N_{\Lambda}^{\text {old }} & =0.7 \cdot 10^{5} \longrightarrow \\
S I G & =188.49
\end{aligned} \begin{aligned}
N_{\Lambda}^{\text {new }} & =3.0 \cdot 10^{5} \\
S I G & =448.02
\end{aligned}
$$

Polarization analysis for 10-40\% centrality:

$$
N_{\Lambda}^{10-40 \%}=1,9 \cdot 10^{5}
$$

Topology Parameter	Cut Style	Hard Cut	Pre- Cut
$d_{1}[\mathrm{~mm}]$	$<$	5	12
$d_{2}[\mathrm{~mm}]$	$>$	8	5
$d_{3}[\mathrm{~mm}]$	$>$	24	15
$d_{v}[\mathrm{~mm}]$	$>$	65	50
$d_{t}[\mathrm{~mm}]$	$<$	6	10
$\Delta \alpha\left[{ }^{\circ}\right]$	$>$	15	15

> MVA strongly supresses the background
$>$ Even with lower topological cuts, the significance is much higher
> Increase of the identified Λs by ~300\% compared to hard-cut analysis

Λ Polarization: two approaches

TECHNISCHE
(1) Event plane method
$>$ Get $\mathrm{dN} / \mathrm{d} M_{i n v}$ in a certain $\Delta \phi_{p}^{*}$-bin
$>$ Get net amount of Λs in that bin
$>$ Plot distribution of $N_{\Lambda}\left(\Delta \phi_{p}^{*}\right)$
$>$ Fit this distribution to get $\left\langle\sin \left(\Delta \phi_{p}^{*}\right)\right\rangle$
$>$ Calculate P_{Λ}
$>$ Final result is corrected by $1 / R_{E P}$ while $R_{E P}^{10-40 \%}$ is used
$>\mathrm{D}$: second decomposition in $\Delta \phi_{p}^{*}$-bins
> A: no background assumption
(2) Invariant mass fit method
$>$ Plot the distribution of $\left\langle\sin \left(\Delta \phi_{p}^{*}\right)\right\rangle_{t o t}$ as a function of $M_{i n v}$
$>$ Get S/B-ratio in each bin: $f\left(M_{i n v}\right)$
$>$ Make assumption for $\left\langle\sin \left(\Delta \phi_{p}^{*}\right)\right\rangle_{B G}$
$>$ Fit the distribution to get $\left\langle\sin \left(\Delta \phi_{p}^{*}\right)\right\rangle_{S G}$
$>$ Calculate P_{Λ}
$>1 / R_{E P}^{10 \%}$ in 10% centrality bins is weighted event-by-event when filling $\left\langle\sin \left(\Delta \phi_{p}^{*}\right)\right\rangle_{\text {tot }}$
$>\mathrm{A}$: direct extraction of $\left\langle\sin \left(\Delta \phi_{p}^{*}\right)\right\rangle_{S G}$
> D: background assumption needed

(1) Event plane method

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Description of the distribution: Landau +2 Gaussian

$$
f_{g l o b a l}\left(M_{i n v}\right)=\frac{C}{2 \pi i} \int_{c-i \infty}^{c+i \infty} e^{s \cdot \log (s)+M_{i n v} s} d s+G_{1}^{\mu, \sigma_{1}, A_{1}}\left(M_{i n v}\right)+G_{2}^{\mu, \sigma_{2}, A_{2}}\left(M_{i n v}\right)
$$

\Rightarrow Fix: $\mu, \sigma_{1}, \sigma_{2}, A_{1} / A_{2}$ for the Λ peak and L_{1}, L_{2} for BG Global fit \qquad Differential fit 8 par.

 2 par.

 by the mixed-event method

(1) Event plane method

Fit the distribution of the polarization angle $\Delta \phi_{p}^{*}=\Psi_{E P}-\phi_{p}^{*}$

$>$ Get distribution of $M_{i n v}$ in a certain $\Delta \phi_{p}^{*}$-bin
$>$ Get net amount of Λs in that bin
$>$ Plot distribution of $N_{\Lambda}\left(\Delta \phi_{p}^{*}\right)$
$>$ Fit this distribution to get $\left\langle\sin \left(\Delta \phi_{p}^{*}\right)\right\rangle$
$>$ Calculate P_{Λ}

Green:
Sin-Terms Blue:
Cos-Terms
$\frac{d N}{d \Delta \phi_{p}^{\Lambda}}=N_{0}\left[1+2 b_{1} \sin \left(\Delta \phi_{p}^{*}\right)+2 c_{1} \cos \left(\Delta \phi_{p}^{*}\right)+2 b_{2} \sin \left(2 \Delta \phi_{p}^{*}\right)+2 c_{2} \cos \left(2 \Delta \phi_{p}^{*}\right)+\cdots\right]$

$\Rightarrow P_{\Lambda}[\%]=3.762 \pm 0.699$ (stat.)

Parameter	Value $/ \mathbf{1 0}^{\mathbf{3}}$	Error/10
$\mathbf{3}$		
N_{0}	9172	21
b_{1}	8.91	1.65
c_{1}	-7.45	1.66

$>c_{1}$: comparable magnitude to b_{1}

(2) Invariant mass fit method

Fit the distribution of $\left\langle\sin \left(\Delta \boldsymbol{\phi}_{p}^{*}\right)\right\rangle$

10-40\% centrality
$>$ Plot the distribution of $\left\langle\sin \left(\Delta \phi_{p}^{*}\right)\right\rangle_{t o t}$ as a function of $M_{i n v}$
$>$ Get S and B in each bin: $f\left(M_{\text {inv }}\right)=S /(S+B)$
$>$ Make assumption for $\left\langle\sin \left(\Delta \phi_{p}^{*}\right)\right\rangle_{B G}$
\Rightarrow Fit the distribution to get $\left\langle\sin \left(\Delta \phi_{p}^{*}\right)\right\rangle_{S G}$

\Rightarrow Calculate P_{Λ}

Λ Polarization: Results

TECHNISCHE
UNIVERSITA'T
DARMSTADT

Event Plane Method for background under the Λ peak:

$>$ Both methods are consistent:

$$
\begin{gathered}
P_{\Lambda}^{E P M}[\%]=3.762 \pm 0.699(\text { stat } .) \\
P_{\Lambda}^{I M M}[\%]=3.548 \pm 0.754(\text { stat })
\end{gathered}
$$

$>$ But background correlations of the same order:

$$
P_{B G}^{E P M}[\%]=3.689 \pm 1.133(\text { stat. })
$$

$>$ Effect not seen in the uncorrelated background (mixed-event, ϕ rotation) \Rightarrow correlated effect!

Summary and Outlook

Summary:

$>$ Neural network to improve Λ identification :
\rightarrow factor ~ 4 more Λs in comparison to previous analysis
> Polarization measurement:
$\rightarrow 2$ different methods applied: both in consistence
$>$ Dominant source of systematics:
\rightarrow Non-zero background correlations in the P_{Λ} signal extraction, which has similar magnitude

Outlook:

Results:
This analysis (Preliminary)

$>$ Estimate systematic errors: check where the background polarization comes from and apply corrections
$>$ How does the finite detector acceptance influences the polarization measurement?
\rightarrow Use Pluto (Monte-Carlo simulation framework for HIC collisions and hadronic physics) to generate Λs :

1. Unpolarized: Guide them trough the HADES detector (GEANT) and apply analysis procedure (result $P_{\Lambda}=0$, but without flow)
2. Different degree of polarization: Do the same procedure \rightarrow What do we measure as P_{Λ} ?

Back Up
 Neural network analysis

TECHNISCHE
UNIVERSITATT
DARMSTADT

Input
 Background:
 Mixed-Event -
 π^{-}from one event and
 p from another event

Signal:
Thermal Λ s embedded
into real data

Input Parameters

Topological parameters: $d_{v}, d_{1}, d_{2}, d_{3}, d_{t}$ In addition: $m_{\pi}, m_{p}, p_{\Lambda} \longleftarrow$ significant increase of the efficiency

Synapse

Connections between the neurons, adjusted with a weight $w_{i j}^{l}$

Hidden Layers

1. Synapse Function:
$\kappa:\left(x_{i j}^{l-1} \mid w_{i j}^{l-1}\right) \longmapsto w_{0 j}^{l-1}+\sum_{i=1}^{n} w_{i j}^{l-1} x_{i}^{l-1}$
2. Neuron Activation Function:
$\alpha: x \mapsto \frac{1}{1+e^{-k x}}$ (Sigmoid)

Output Layers

Combines the information into one discriminant D

Back Up
 Neural network analysis

TECHNISCHE
UNIVERSITATT
DARMSTADT

Signal:

Thermal Λ s embedded into real data

Input

Background:

Mixed-Event -
π^{-}from one event and
p from another event

Training

Convergence of the weights for maximal descrimination between signal and background!

Required output

Signal: $D_{\text {ideal }}=1 \longleftrightarrow$ Background: $D_{\text {ideal }}=0$

Actual Output: $0<D_{\text {real }}<1$

Adjusting the weights: Back-Propagation
Error function: $E\left(x_{1}, \ldots, x_{N}\right)=\sum_{n=1}^{S G+B G} \frac{1}{2}\left(D_{\text {ideal }}-D_{\text {real }}\right)^{2}$
Aim: Minimize the error function!
Weights are updated:

Weights of the next training cycle

Weights of the current training cycle

Max. gradient in w-space

Back Up
 Event Plane Method - Fit Parameter

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Range:
$\mu \pm 2 \sigma$
Background distribution

Parameter	Value/10	-3
N_{0}	9172	21
b_{1}	8.91	1.65
c_{1}	-7.45	1.66
b_{2}	-1.54	1.65
c_{2}	6.79	1.65
b_{3}	-1.71	1.65
c_{3}	0.60	1.65

Parameter	Value/10	-3
N_{0}	3468	13
b_{1}	8.74	2.68
c_{1}	-3.29	2.69
b_{2}	-0.20	2.69
c_{2}	2.42	2.68
b_{3}	2.43	2.69
c_{3}	0.97	2.68

Back Up
 Phi Rotation

$>$ Phi Rotation with probability distribution according to ϕ_{p}^{*} (right panel)
> Parameters consistent with 0 !
$>$ Background polarization must be a correlated effect

Parameter	Value $/ \mathbf{1 0}^{\mathbf{3}}$	Error/10
$\mathbf{- 3}$		
N_{0}	9397	22
b_{1}	0.92	1.63
c_{1}	1.74	1.63
b_{2}	-0.12	1.63
c_{2}	-1.03	1.63
b_{3}	2.12	1.63
c_{3}	0.20	1.63

