A Polarization in AutAu COLLISIONS at $\sqrt{s_{NN}} = 2.4 \ GeV$

TECHNISCHE UNIVERSITÄT DARMSTADT

MEasured With

Frederic Kornas for the HADES collaboration

Strange Quark Matter 2019

11.06.2019

Polarization measurement

Global Polarization Measurement:

- System created in high-energy HICs successfully described by relativistic hydrodynamics.
- > In peripheral collisions: $|L| \sim 10^5 \hbar$
- > What is the effect on fluid/transport?

Vorticity: $\vec{\omega} = \frac{1}{2} \vec{\nabla} \times \vec{v}$

> Vorticity could be very high $\omega \approx 10^{21} s^{-1}$

How to measure the vorticity?

\blacktriangleright Large orbital momentum \Rightarrow Polarization of the particle spins

\rightarrow Two contributions:

- 1. Spin-orbit coupling (same for q and \bar{q})
- 2. Electromagnetic coupling (opposite for for q and \bar{q})

Magnetic field effect on photon production, V.Skokov, Western Michigan University,2014

Polarization measurement

)

High Acceptance DiElectron Spectrometer

Fixed-target experiment

Fast detector: 8kHz trigger rate for Au+Au

High acceptance: full azimuthal coverage, $18 - 85^{\circ}$ polar angle

High Acceptance DiElectron Spectrometer

Au+Au run at $\sqrt{s}_{NN} = 2.4 GeV$

Overall: 2.4 · 10⁹ events analyzed

Fixed-target experiment

Fast detector: 8kHz trigger rate for Au+Au

High acceptance: full azimuthal coverage, $18 - 85^{\circ}$ polar angle

Centrality Estimation

TECHNISCHE UNIVERSITÄT DARMSTADT

Offline centrality selection based on hit or track multiplicity

5

Event Plane Reconstruction

Event Plane Resolution:

- Determination of Full Resolution from Sub-Event Resolution (distribution randomly divided into 2 subsamples)
- Based on method by J.-Y. Ollitrault (arXiv:nucl-ex/9711003)

Event Plane Reconstruction:

Based on hits of charged projectile spectators in the Forward Wall

6

Analysis procedure

Particle Identification

Decay Topology

- Simulations: Thermal As embedded into real data (1A per event)
- Mixed-event method on real data to describe the background

- Enough statistics very crucial for the polarization analysis (Hard-cut analysis removes a lot of the signal)
- Employ neural network in order to gain more statistics!

Neural Network Analysis

Toolkit for Multivariate Data Analysis (TMVA) included in ROOT (https://root.cern.ch/tmva)

Input

Signal: Thermal Λs embedded into real data **Background:** Mixed-Event – π^- from one event and p from another event

TECHNISCHE

UNIVERSITÄT DARMSTADT

Input Parameters

Topological parameters: d_{ν} , d_1 , d_2 , d_3 , d_t

In addition: m_{π} , m_{p} , p_{Λ} \leftarrow significant increase of the efficiency

Training

Convergence of the weights for maximal descrimination between signal and background!

Required output

Signal: $D_{ideal} = 1$ \leftarrow Background: $D_{ideal} = 0$

Actual Output: 0 < D_{real}< 1

11.06.2019 | Strange Quark Matter 2019 | Frédéric Kornas

Neural Network Analysis

Toolkit for Multivariate Data Analysis (TMVA) included in ROOT (https://root.cern.ch/tmva)

MVA Response

> Clear discrimination of signal and background: Simulated Λs peak at D=1 while mixed-event background peaks at D=0 as expected

In real data (same event) the signal fraction is much lower:

$$\sum S \ll \sum B$$

Vary D to find the ideal cut value (i.e. with maximum significance) $D_{min} = 0.9$

Invariant mass distribution

TECHNISCHE UNIVERSITÄT DARMSTADT

Polarization analysis for 10-40% centrality: $N_A^{10-40\%} = 1,9 \cdot 10^5$

11.06.2019 | Strange Quark Matter 2019 | Frédéric Kornas

compared to hard-cut analysis

Λ Polarization: two approaches

TECHNISCHE UNIVERSITÄT DARMSTADT

	(1) Event plane method	(2) Invariant mass fit method
General procedure	 Get dN/dM_{inv} in a certain Δφ_p*-bin Get net amount of Λs in that bin Plot distribution of N_Λ(Δφ_p*) Fit this distribution to get (sin(Δφ_p*)) 	 Plot the distribution of (sin(Δφ_p[*]))_{tot} as a function of M_{inv} Get S/B-ratio in each bin: f(M_{inv}) Make assumption for (sin(Δφ_p[*]))_{BG} Fit the distribution to get (sin(Δφ_p[*]))_{SG}
Correction for <i>R_{EP}</i>	 Calculate P_{Λ} Final result is corrected by $1/R_{EP}$ while $R_{EP}^{10-40\%}$ is used 	 Calculate P_Λ 1/R^{10%}_{EP} in 10% centrality bins is weighted event-by-event when filling (sin(Δφ[*]_p))_{tot}
Advantage/ Drawback	 D: second decomposition in Δφ[*]_p-bins A: no background assumption 	 A: direct extraction of $\langle sin(\Delta \phi_p^*) \rangle_{sG}$ D: background assumption needed

(1) Event plane method

TECHNISCHE UNIVERSITÄT DARMSTADT

11.06.2019 | Strange Quark Matter 2019 | Frédéric Kornas

(1) Event plane method

TECHNISCHE UNIVERSITÄT DARMSTADT

Fit the distribution of the polarization angle $\Delta \phi_p^* = \Psi_{EP} - \phi_p^*$

- > Get net amount of Λs in that bin
- > Plot distribution of $N_{\Lambda}(\Delta \phi_p^*)$
- > Fit this distribution to get $\langle \sin(\Delta \phi_p^*) \rangle$
- > Calculate P_{Λ}

 $\frac{dN}{d\Delta\phi_p^{\Lambda}} = N_0 \left[1 + 2b_1 \sin(\Delta\phi_p^*) + 2c_1 \cos(\Delta\phi_p^*) + 2b_2 \sin(2\Delta\phi_p^*) + 2c_2 \cos(2\Delta\phi_p^*) + \cdots \right]$ First order event

plane resolution

Parameter	Value/10 ⁻³	Error/10 ⁻³
N ₀	9172	21
b_1	8.91	1.65
<i>c</i> ₁	-7.45	1.66

 \succ c_1 : comparable magnitude to b_1

 $\Rightarrow P_{A} [\%] = 3.762 \pm 0.699 (stat.)$

 $P_{\Lambda} = \frac{8}{\pi \alpha_{\Lambda}} \frac{b_1}{R_1}$

(2) Invariant mass fit method

Fit the distribution of $\langle sin(\Delta \phi_n^*) \rangle$

- Plot the distribution of $\langle sin(\Delta \phi_p^*) \rangle_{tot}$ as a function of M_{inv}
- Get S and B in each bin: $f(M_{inv}) = S/(S+B)$ \geq
- Make assumption for $\langle sin(\Delta \phi_p^*) \rangle_{BC}$
- Fit the distribution to get $\langle sin(\Delta \phi_p^*) \rangle_{sc}$
- Calculate P_{Λ}

$$\sin(\Delta\phi_p^*)\rangle_{tot} = f(M_{inv})\langle\sin(\Delta\phi_p^*)\rangle_{SG} + (1 - f(M_{inv}))\langle\sin(\Delta\phi_p^*)\rangle_{BG}$$

$$\langle\sin(\Delta\phi_p^*)\rangle_{BG} = \alpha + \beta \cdot M_i$$

$$P_{\Lambda} = \frac{8}{\pi\alpha_{\Lambda}}\langle\sin(\Delta\phi_p^*)\rangle_{SG}$$

 $\Rightarrow P_{A}[\%] = 3.548 \pm 0.754(stat.)$

Background shows non-zero correlations with magnitude similar to the Λ signal!

Λ Polarization: Results

Event Plane Method for background under the Λ peak:

Both methods are consistent:

 $P_{\Lambda}^{EPM}[\%] = 3.762 \pm 0.699 \,(stat.)$ $P_{\Lambda}^{IMM}[\%] = 3.548 \pm 0.754 (stat.)$

- > But background correlations of the same order: $P_{BG}^{EPM}[\%] = 3.689 \pm 1.133(stat.)$
- Effect not seen in the uncorrelated background (mixed-event, ϕ rotation) \Rightarrow correlated effect!

Summary and Outlook

- Neural network to improve Λ identification :
- \rightarrow factor \sim 4 more Λ s in comparison to previous analysis
- Polarization measurement:
- \rightarrow 2 different methods applied: both in consistence
- Dominant source of systematics:
- \rightarrow Non-zero background correlations in the P_{Λ} signal extraction, which has similar magnitude

Outlook:

- Estimate systematic errors: check where the background polarization comes from and apply corrections
- How does the finite detector acceptance influences the polarization measurement?
- \rightarrow Use Pluto (Monte-Carlo simulation framework for HIC collisions and hadronic physics) to generate Λs :
- Unpolarized: Guide them trough the HADES detector (GEANT) and apply analysis 1. procedure (result $P_{\Lambda} = 0$, but without flow)
- 2. Different degree of polarization: Do the same procedure \rightarrow What do we measure as P_{Λ} ?

ongoingi

technische

UNIVERSITÄT DARMSTADT

Back Up Neural network analysis

Back Up Neural network analysis

Back Up Event Plane Method – Fit Parameter

Parameter	Value/10 ⁻³	Error/10 ⁻³
N ₀	9172	21
b_1	8.91	1.65
<i>c</i> ₁	-7.45	1.66
<i>b</i> ₂	-1.54	1.65
<i>C</i> ₂	6.79	1.65
b ₃	-1.71	1.65
<i>c</i> ₃	0.60	1.65

Parameter	Value/10 ⁻³	Error/10 ⁻³
N ₀	3468	13
b_1	8.74	2.68
<i>c</i> ₁	-3.29	2.69
<i>b</i> ₂	-0.20	2.69
<i>C</i> ₂	2.42	2.68
<i>b</i> ₃	2.43	2.69
<i>c</i> ₃	0.97	2.68

Back Up Phi Rotation

After Boost

