

Production of light flavor hadrons measured by PHENIX at RHIC

Iurii Mitrankov For PHENIX collaboration

 \circ Light flavor hadrons in A+A & p+A → properties of the produced medium & reaction dynamics;

- ○Light flavor hadrons in A+A & p+A → properties of the produced medium & reaction dynamics;
- Different hadrons properties \rightarrow observables in the soft sector & high-p_T probes & signatures of the onset of collectivity in collisions of small systems;

	π^0	η	ω	K *	K _S	φ
Mass, MeV	135	548	782	892	498	1019
Quark content	$u \overline{u} d \overline{d}$	$\frac{1}{6}\left(u\bar{u}+d\bar{d}-2s\bar{s}\right)$	$\frac{1}{\sqrt{2}} \left(u \bar{u} + d \bar{d} \right)$	ds	$\frac{1}{\sqrt{2}} \left(d\bar{s} + s\bar{d} \right)$	SS
Lifetime, fm/c	$2.5 \cdot 10^{7}$	$1.6 \cdot 10^5$	23	4.16	$2.7 \cdot 10^{13}$	46

- ○Light flavor hadrons in A+A & p+A → properties of the produced medium & reaction dynamics;
- Different hadrons properties → observables in the soft sector & high p_T probes & signatures of the onset of collectivity in collisions of small systems;
- ο PHENIX measured π^0 , η, K*, K_S, φ & ω in p+p, p/d/³He+Au, Cu+Cu, Cu+Au, Au+Au & U+U:
 - ✓ Baseline measurements in p+p collisions;
 - \checkmark Study of the parton energy loss in heavy ion collisions;
 - ✓ Cold nuclear matter effects in small systems;
- Comparison to higher energy experiments and theoretical model predictions.

Mesons spectra in p+p @ 200 GeV

 Results were found to be consistent between the different decay modes;

• Well described by the Tsallis distribution functional form with only two parameters:

✓
$$T = 112.6 \pm 3.8 + (11.8 \pm 7.0)m_0$$
[GeV/c²] MeV;

$$n = 9.48 \pm 0.14 + (0.66 \pm 0.39)m_0[\text{GeV/c}^2]$$

(Phys.Rev.D83:052004)

 Baseline to compare with more comlex and heavy p+A and A+A;

Event generators tuning;

Availableparametrizationsoffragmentation functions.

Large Systems

New results in asymmetric Cu+Au at $\sqrt{s_{NN}}=200 \text{ GeV } \& \text{ in}$ deformed U+U at $\sqrt{s_{NN}}=192 \text{ GeV};$

Peter the Great St.Petersburg Polytechnic

Light mesons R_{AB} at Vs_{NN}=200 GeV рнжемих

In most central collisions $\varphi \& K^*$ are less suppressed than $\pi^0, \eta, K_s \& \omega$ in the intermediate p_T range;

Peter the Great St.Petersburg Polytechnic

Light mesons R_{AB} at Vs_{NN}=200 GeV рнжемих

In most central collisions ϕ & K* are less suppressed than $\pi^{0}, \eta, K_{s} \& \omega$ in the intermediate p_T range; At $p_T > 5$ GeV/c, φ , K*, π^0 , η , K_S, ω R_{AB} exhibit similar shape; **R**_{AB} in peripheral collisions consistent with each other within

uncertainties.

Light mesons integrated R_{AB}

- The φ & K* integrated R_{AB} at p_T \gtrsim 2 GeV/c shows less suppression than π^0 & η ;
- The ϕ , K*, π^0 , η & K_s integrated R_{AB} at $p_T > 5$ GeV/c show same suppression level.

Light mesons integrated R_{AA}

Small systems: p+Au, d+Au, ³He+Au

π^{0} & ϕ R_{AB} in p+Au, d+Au, ³He+Au

π^0 & ϕ R_{AB} in p+Au, d+Au, ³He+Au

π^0 & ϕ R_{AB} in p+Au, d+Au, ³He+Au

π^{0} & ϕ R_{AB} in p+Au, d+Au, ³He+Au

• In whole p_T range $\phi \& \pi^0$ mesons R_{AB} show similar suppression level:

✓ That might indicate that CNM effects are not responsible for the differences between ϕ and π^0 seen in A+A.

11 June 2019

$\pi^{0}\&\phi \langle R_{AB} \rangle$ (η) in p/d/³He+Au

- $\circ \phi \langle R_{AB} \rangle$ in Au-going a hint of enhancement;
- $\circ \phi \langle R_{AB} \rangle$ at midrapidity equal to unity;
- $\circ \phi \langle R_{AB} \rangle$ in p/He-going a hint of suppression;

$\pi^{0}\&\phi \langle R_{AB} \rangle$ (η) in p/d/³He+Au

- $\circ \phi \langle R_{AB} \rangle$ in Au-going a hint of enhancement;
- $\circ \phi \langle R_{AB} \rangle$ at midrapidity equal to unity;
- $\circ \phi \langle R_{AB} \rangle$ in p/He-going a hint of suppression;
- Same φ (R_{AB}) behavior was observed in p-Pb at $\sqrt{s_{NN}}=5.02$ TeV at ALICE. (Nucl.Phys.A932,218)

$\pi^{0}\&\phi\langle R_{AB}\rangle$ (η) in p/d/³He+Au

Summary

≻Large Systems:

 \circ Light mesons $\langle R_{AA} \rangle$ show same suppression level in Cu+Au, U+U, Au+Au and Cu+Cu;

- Production and suppression of the light meson seems to depend on nuclear overlap size, but not on its geometry and not on its density;
- $\circ \phi \& K^*$ exhibit a different suppression pattern compared to lighter mesons (π^0 , η , K_s , ω);
 - ✓ The observation of these patterns in many collision systems can provide a contribution to the understanding of the strangeness enhancement competing with energy loss;

≻Small systems:

- ο The φ & π^0 mesons R_{AB} 's are consistent in p/d/³He+Au collisions in all centralities;
 - ✓ That might indicate that cold nuclear effects are not responsible for the differences between $\varphi \& \pi^0$ seen in Au+Au, Cu+Cu, Cu+Au and U+U collisions;
- \circ In most central collisions in the intermediate p_T range there's an ordering of $R_{pAu} > R_{dAu} > R_{HeAu}$ for both $\phi \& \pi^0$ mesons:
 - \checkmark The ordering might indicate a system size dependence;
- These results can provide additional constraints for the models that try to explain CNM effects (like AMPT, EPOS).

Summary

≻Large Systems:

 \circ Light mesons $\langle R_{AA} \rangle$ show same suppression level in Cu+Au, U+U, Au+Au and Cu+Cu;

- Production and suppression of the light meson seems to depend on nuclear overlap size, but not on its geometry and not on its density;
- $\circ \phi \& K^*$ exhibit a different suppression pattern compared to lighter mesons (π^0 , η , K_S , ω);
 - ✓ The observation of these patterns in many collision systems can provide a contribution to the understanding of the strangeness enhancement competing with energy loss;

≻Small systems:

- ο The φ & π^0 mesons R_{AB} 's are consistent in p/d/³He+Au collisions in all centralities;
 - ✓ That might indicate that cold nuclear effects are not responsible for the differences between $\varphi \& \pi^0$ seen in Au+Au, Cu+Cu, Cu+Au and U+U collisions;
- \circ In most central collisions in the intermediate p_T range there's an ordering of $R_{pAu} > R_{dAu} > R_{HeAu}$ for both $\varphi \& \pi^0$ mesons:
 - \checkmark The ordering might indicate a system size dependence;
- These results can provide additional constraints for the models that try to explain CNM effects (like AMPT, EPOS).

Thank you for your attention!