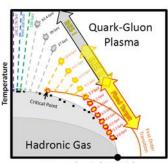
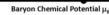

Status and performance of the detector upgrades for STAR in the BES-II and beyond

Florian Seck (TU Darmstadt) for the STAR Collaboration

The 18th International Conference on **Strangeness in Quark Matter (SQM 2019)** 10-15 June 2019, Bari (Italy)

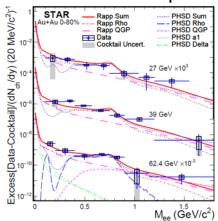




Outline

- o Performance in the Beam Energy Scan phase II (BES-II) program at RHIC
 - Motivation
 - o Performance of the new sub-detectors: EPD, iTPC, eTOF
 - o Progress with the BES-II
- Opportunities for forward physics at STAR
 - Motivation
 - Status of the forward detector upgrades

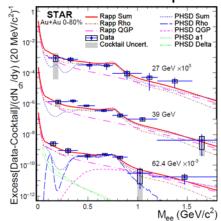
o Summary



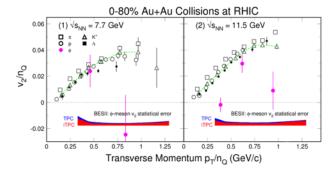
o Interesting hints in many observables found in the BES-I program

o Interesting hints in many observables found in the BES-I program

dielectron excess spectra



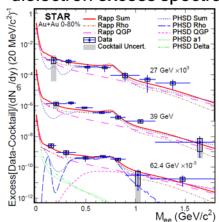
- \circ Spectral function of ρ meson sensitive to total baryon density and temperature evolution during the collision
- Measure excitation function of low-mass excess
- o Link to chiral symmetry restoration?


o Interesting hints in many observables found in the BES-I program

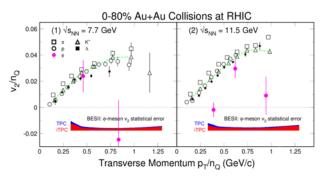
dielectron excess spectra

- Spectral function of ρ meson sensitive to total baryon density and temperature evolution during the collision
- Measure excitation function of low-mass excess
- o Link to chiral symmetry restoration?

elliptic flow v_2 of the ϕ meson



- o Very small hadronic cross section of \$\phi\$
- If confirmed, lack of collectivity at low collision energies indicates hadronic-interaction dominates medium
- o Onset of Deconfinement?

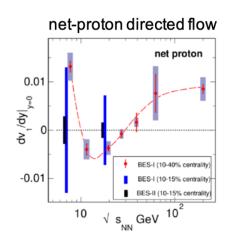

o Interesting hints in many observables found in the BES-I program

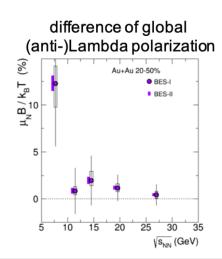
dielectron excess spectra

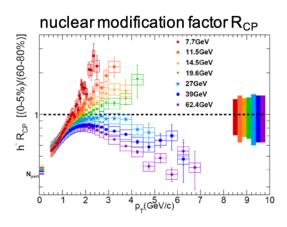
- Spectral function of ρ meson sensitive to total baryon density and temperature evolution during the collision
- Measure excitation function of low-mass excess
- o Link to chiral symmetry restoration?

elliptic flow v_2 of the ϕ meson

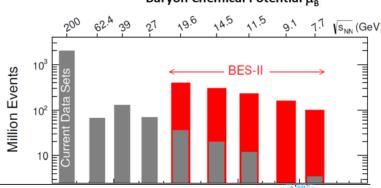
- o Very small hadronic cross section of \$\phi\$
- If confirmed, lack of collectivity at low collision energies indicates hadronic-interaction dominates medium
- o Onset of Deconfinement?

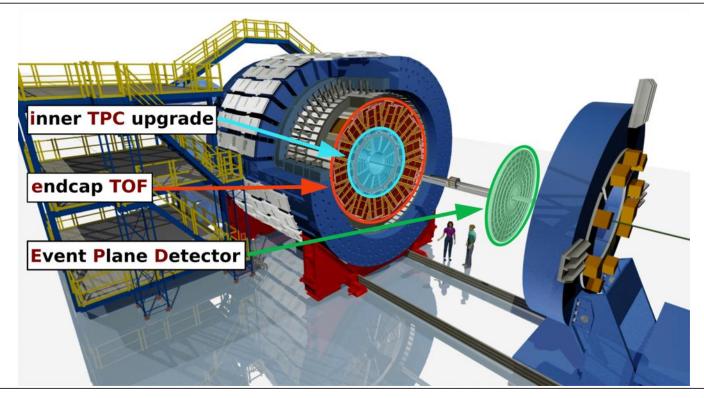

fluctuations of conserved charges




- Non-monotonic behavior indicating vicinity to the QCD critical point?
- o Competition with HADES, BM@N, ...
- Measure possible return to baseline within the same experiment

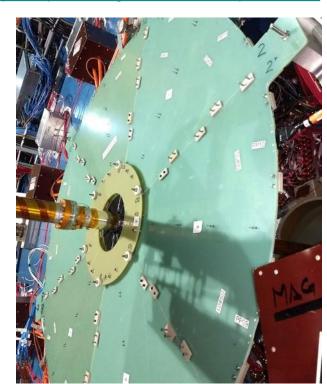
- o Interesting hints in many observables found in the BES-I program
 - o Dielectrons, elliptic flow v₂ of the φ meson, fluctuations of conserved charges
 - And many other observables

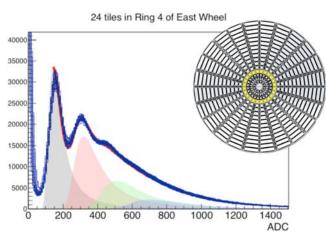



- o Revisit the lower energies of BES-I in collider mode
- \circ Fixed target program to reach even further down in $\sqrt{s_{_{
 m NN}}}$
 - o Handshake at overlapping energy of 7.7 GeV
- Typically 20 times more statistics than in BES-I
 - Low Energy RHIC electron Cooling (LEReC)
 - First RF linac-based electron cooler (bunched beam cooling)
- Significantly improved detector setup
 - o Acceptance, efficiency, particle identification
 - o EPD, iTPC, eTOF

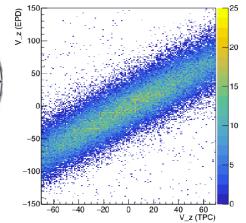
Baryon Chemical Potential μ_{R}

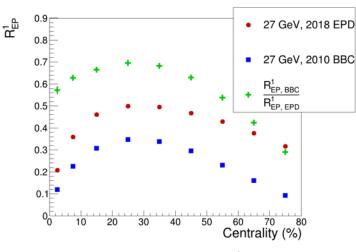
STAR detector upgrades for BES-II




Event Plane Detector

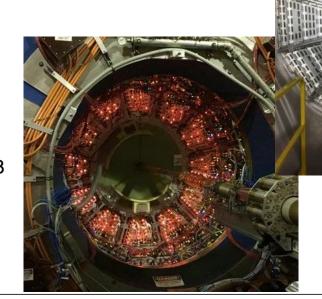
STAR Note 666 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0666

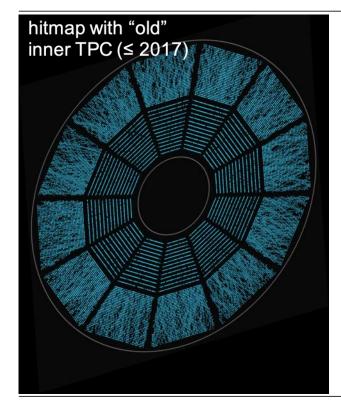

- o Replaces Beam-Beam-Counters (BBC)
 - Higher granularity: two wheels (East, West) with 16 radial segments and
 24 (12 for the innermost ring) azimuthal segments -> 744 tiles
 - Larger acceptance: $2.1 < |\eta| < 5.1$ \longrightarrow coverage of ~10 units in η for v_1
- o Centrality determination away from mid-rapidity
- o Greatly improves event plane resolution
 - o Crucial for key measurements in the BES-II: v_n, polarization
- Improved trigger capabilities
 - Asymmetry cut on hits in the East and West wheels can reduce background from beam-pipe collisions
- o Already used for physics analysis of 2018 data

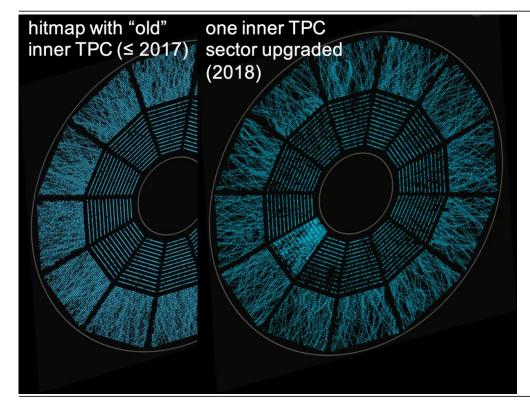

EPD Performance

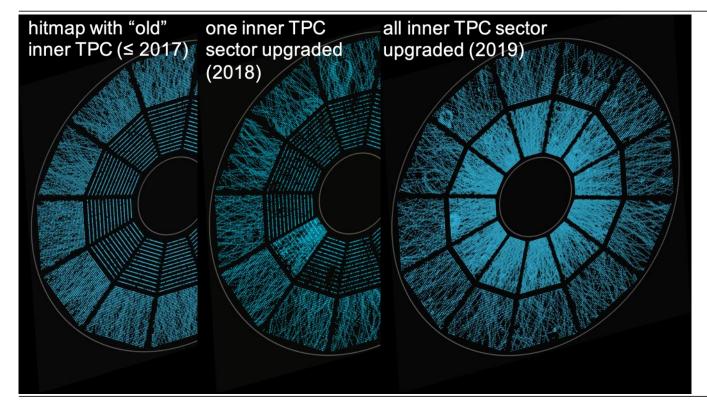
- o Clear MIP peak in all 744 tiles
- o Very good uniformity
- identical ADC distributions of the tiles within each ring

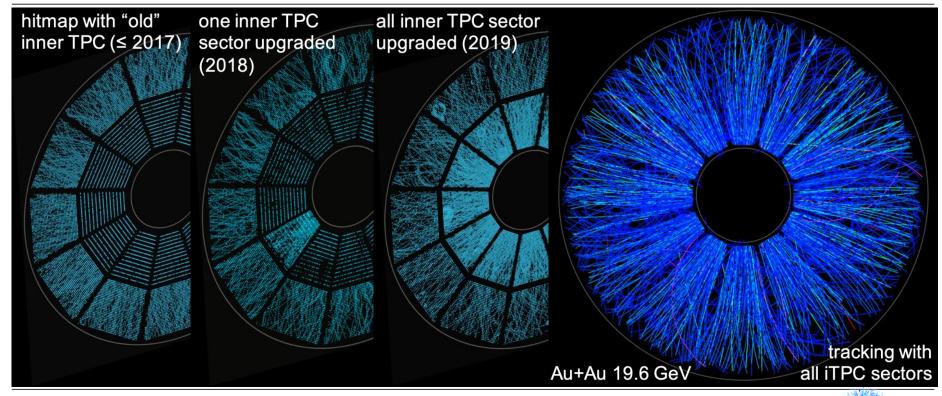
- Correlation between offline vertex found by the TPC and the EPD
- \circ EPD timing resolution σ = 0.75ns

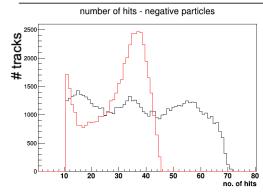

 Significantly improved 1st order event plane resolution across all centralities

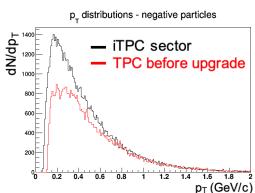

Inner Time Projection Chamber Upgrade

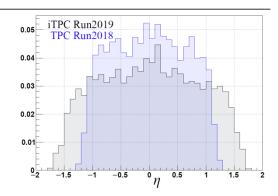

NIM A 896 (2018) 90, STAR Note 644 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0644

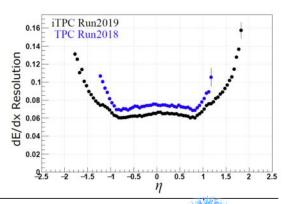

- o Increase segmentation of the inner pad planes of the TPC
 - o Continuous pad rows
 - Doubled the number of readout channels
- Successful commissioning of one sector during
 2018 data-taking
- Installation of all 24 sectors completed during 2018 summer shutdown
- o Integrated in 2019 data-taking since day-1



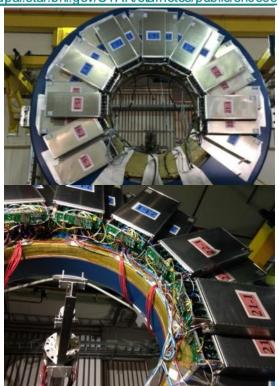


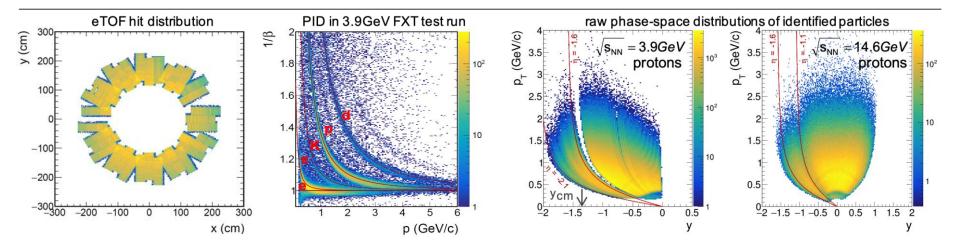





iTPC Performance

- Increased maximum number of hits per track from 45 to 72
- o Improved momentum resolution
- Decreased minimum transverse
 momentum threshold from
 p_T > 125 MeV/c to p_T > 60 MeV/c
- o Increased mid-rapidity coverage from $|\eta|$ <1.0 to $|\eta|$ <1.5
- Improved dE/dx resolution (15%-30%)




Endcap Time of Flight Detector

STAR Note 665 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0665

- East poletip of STAR equipped with 36 modules of MRPCs
 - o 3 MPRCs with 32 strips per module: 6912 channels in total
 - o Installation completed end of November 2018
- Extends particle identification capabilities and enables gapless scan of the
 QCD phase diagram in collider and fixed-target mode
 - o Complements increased iTPC coverage $|\eta|$ <1.5
 - o Provides mid-rapidity PID in fixed-target program
 - Essential for fluctuation measurements
 - o Exploration of rapidity dependence of key BES-II observables
- Synergy project with CBM collaboration as part of FAIR Phase-0
 - o Operational experience via large-scale integration test of future CBM TOF

eToF Performance

- System time resolution of <85ps demonstrated with one test sector in 2018 data-taking
- o Clearly distinguished particle bands over a large momentum range
- o Extended phase-space coverage with eTOF PID in collider mode and fixed-targed collisions

Run-19 Progress

- 19.6 and 14.6GeV runs finished with surplus of recorded events
- 3.0GeV FXT data already taken2018

Currently commissioning
 7.7GeV collider data-taking with
 LEReC to get a heads up for
 next year's production runs

Beam Energy	$\sqrt{s_{NN}}$ (GeV)	$\mu_{\rm B} \; ({\rm MeV})$	Run Time	Number Events
(GeV/nucleon)		, ,		
9.8	19.6	205	4.5 weeks	400M
7.3	14.5	260	5.5 weeks	300M
5.75	11.5	315	5 weeks	230M
4.55	9.1	370	9.5 weeks	160M
3.85	7.7	420	12 weeks	100M
31.2	7.7 (FXT)	420	2 days	100M
19.5	6.2 (FXT)	487	2 days	100M
13.5	5.2 (FXT)	541	2 days	100M
9.8	4.5 (FXT)	589	2 days	100M
7.3	3.9 (FXT)	633	2 days	100M
5.75	3.5 (FXT)	666	2 days	100M
4.55	3.2 (FXT)	699	2 days	100M
3.85	3.0 (FXT)	721	2 days	100M

Motivation: STAR Physics Program after BES-II

STAR Note 648 https://drupal.star.bnl.gov/STAR/stamotes/public/sn0648, STAR Note 669 https://drupal.star.bnl.gov/STAR/stamotes/public/sn0669

- Unique opportunities at mid-rapidity in high energy A+A, p+A, and p+p collisions
 - o Deep look into the QGP with e⁺e⁻ pairs
 - o Lower momentum π , K, p spectra
 - o Hypertriton lifetime measurement
 - Precise direct photon yields and v_n
- o Address fundamental questions in QCD at forward rapidity 2.5 < η < 4 with the forward detector upgrade
 - Portal towards the Elector Ion Collider (EIC)

Beam:

200 GeV: Au+Au

Physics topics:

- Temperature dependence of viscosity through flow harmonics up to η~4
- Longitudinal decorrelation up to η~4
- Global Lambda polarization
 strong rapidity dependence

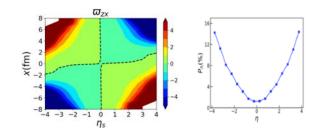
Beam:

500 GeV: p+p

200 GeV: p+p and p+A

Physics topics:

- TMD measurements at high x
- o transversity → tensor charge
- Improve statistical precision for Sivers through DY
- o $\Delta g(x,Q^2)$ at low x through di-jets
- Gluon PDFs for nuclei
 → R_{DA} for direct photons & DY
- Test of saturation predictions through di-hadrons, γ-jets



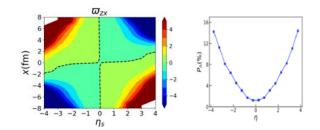
Motivation: STAR Physics Program after BES-II

STAR Note 648 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648, STAR Note 669 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0669

Global Lambda polarization

- o Predicted to depend on viscosity
- Viscous hydrodynamic evolution introduces strong trend with rapidity
- Measurements at forward rapidity are key

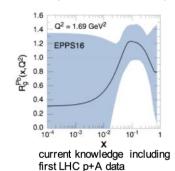
Li, Pang, Wang & Xia, PRC 96 (2017) 054908; (private comm.) F. Beccattini et al. EPJ C 75 (2015) 406

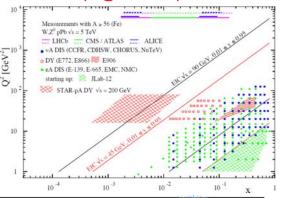


Motivation: STAR Physics Program after BES-II

STAR Note 648 https://drupal.star.bnl.gov/STAR/stamotes/public/sn0648, STAR Note 669 https://drupal.star.bnl.gov/STAR/stamotes/public/sn0669

Global Lambda polarization

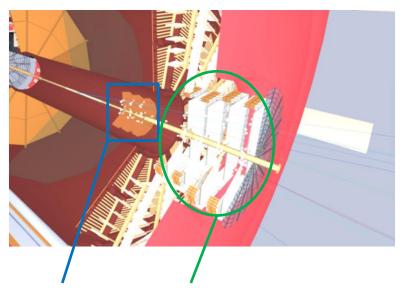

- Predicted to depend on viscosity
- Viscous hydrodynamic evolution introduces strong trend with rapidity
- Measurements at forward rapidity are key


Li, Pang, Wang & Xia, PRC 96 (2017) 054908; (private comm.) F. Beccattini et al. EPJ C 75 (2015) 406

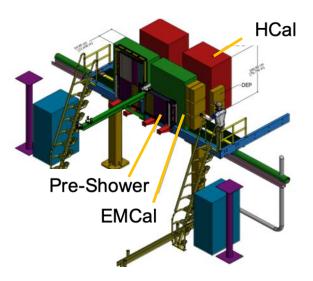
o Probing the initial state

- Nuclear PDFs poorly constrained at low-x
- o Unique kinematic coverage by STAR forward upgrade
- o Measure nPDFs in a x-Q² region where nuclear effects are large
- Observables free of final state effects
 - Direct photons → gluon PDF
 - Drell-Yan process → sea quarks

pA@RHIC: unique kinematics


STAR Forward Detectors: FTS + FCS

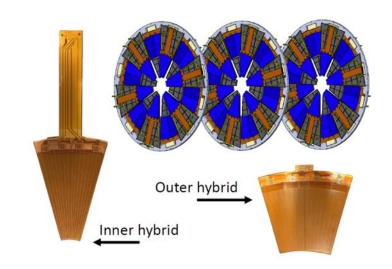
Forward Tracking System


- Located at the
- Coverage: $2.5 < \eta < 4$

West side of STAR

 Reuse existing equipment as much as possible

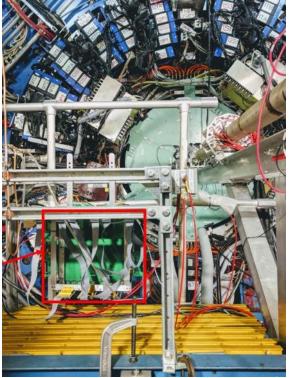
Forward Calorimeter System


Silicon + small-Strip Thin Gap Chambers (sTGC)

Forward Tracking System

Requirements

- o Momentum resolution < 30% in 0.2 < pT < 2 GeV/c (A+A)
- Tracking efficiency of 80% at 100 tracks per event (A+A)
- Charge separation (p+p/p+A)
- Silicon mini-strip disks: 3 layers
 - o Location from interaction point: z = 139.9, 163.2, 186.5 cm
 - o Build on STAR experience with IST detector (part of HFT)
 - Detector module design and prototyping in progress
 - First complete prototype ready for test in Fall/Winter 2019



Forward Tracking System

o Requirements

- o Momentum resolution < 30% in 0.2 < pT < 2 GeV/c (A+A)
- o Tracking efficiency of 80% at 100 tracks per event (A+A)
- Charge separation (p+p/p+A)
- Small-Strip Thin Gap Chamber (sTGC): 4 layers
 - \circ Location z = 270, 300, 330, 360 cm
 - o Significant reduction in cost
 - 30x30 cm prototype delivered to BNL in January
 - Module tested with cosmic rays and commissioned with STAR DAQ
 - o Installed in STAR on June 5, 2019
 - o Full size 60x60 cm prototype in production

Forward Calorimeter System

Requirements

Detector	p+p and p+A	A+A
EMCal	~10% / √E	~20% / √E
HCal	~50% / √E + 10%	-

- Electronic Calorimeter
 - Use PHENIX PbSc
 - New readout SiPM + FEE
- o Hadronic Calorimeter
 - o Sampling iron-scintillator

- o Large scale test run at Fermilab in April 2019
 - o 16 channels of HCal and EMCal each
 - o Promising results: resolution requirement met
- Installation and in-situ testing at STAR
 - o 64 (8x8) EMCal installed, 16 (4x4) HCal installed
 - o 1 layer (9 slats) Pre-Shower (former FMS Post-Shower)
 - New generation of digitizer/trigger boards
- o Currently commissioning in STAR with beam
- 10-20 hours of Au+Au 200 GeV collisions planed in July (parasitic to APEX running)
 - Test readout of calorimeters at ~10kHz rate

Summary

Upgrades for BES-II

- o EPD, iTPC, eTOF successfully commissioned and integrated into data-taking
- o BES-II in full swing: first two collider energies already finished with statistics goals exceeded
- o Many exciting results to be deduced from the data on tape

STAR Forward Rapidity Upgrade

- o Unique program addressing several fundamental questions in QCD paving the way towards an EIC
- Design of all sub-detectors components finalized: HCal + EMCal + tracking(Si + sTGCs)
- Prototypes are tested at STAR right now
- Ready for data-taking after the BES-II in 2021

