

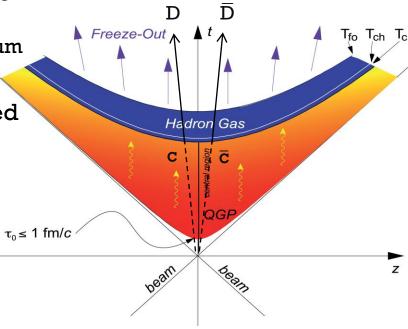
Measurements of open-charm hadrons in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200 \ {\rm GeV}$ by the STAR experiment

Jan Vanek, for the STAR collaboration

NUCLEAR PHYSICS INSTITUTE, CZECH ACADEMY OF SCIENCES

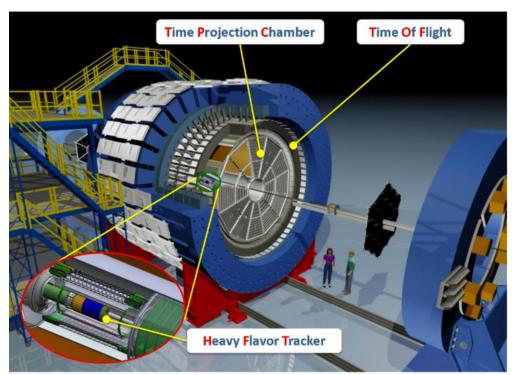
Strangeness in Quark Matter, Bari, Italy

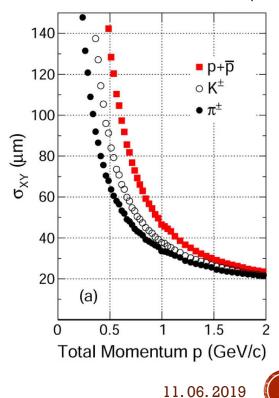
11.06.2019


EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

PHYSICS MOTIVATION

- At RHIC energies, charm quarks are produced predominantly through hard partonic scatterings at early stage of Au+Au collisions
 - They experience the whole evolution of the medium
- Open-charm hadron measurements can be used to study:
 - Charm quark energy loss in the medium
 - D⁰ and D[±] nuclear modification factor
 - Charm quark transport in the medium
 - D⁰ elliptic and triangular flow
 - Charm quark hadronization process
 - \mathbf{D}_{s} and Λ_{c} production
 - Initial tilt of the bulk + initial electromagnetic field
 - D⁰ directed flow

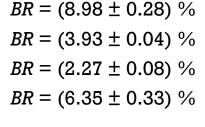


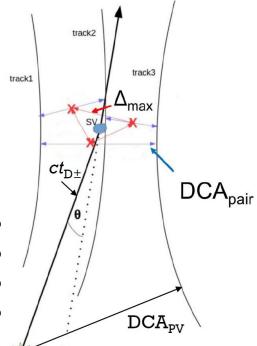


STAR DETECTOR

- Solenoidal Tracker At RHIC
- Heavy Flavor Tracker (HFT, 2014–2016) is a 4-layer silicon detector
 - MAPS 2 innermost layers, Strip detectors 2 outer layers
- Time Projection Chamber (TPC) and Time Of Flight (TOF)
 - Particle momentum (TPC) and identification (TPC and TOF)

PRL 118 212301 (2017)




OPEN-CHARM MEASUREMENTS WITH THE HFT

- STAR took data with the HFT in 2014 and 2016 for Au+Au collisions at $\sqrt{s_{\it NN}}=200~{\rm GeV}$
- The HFT allows direct topological reconstruction of opencharm hadrons through their hadronic decays

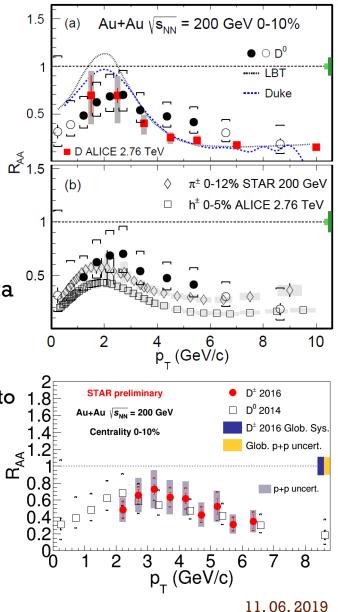
Decay channels used*:

- $D^+ \to K^- \pi^+ \pi^+$ $c\tau = (311.8 \pm 2.1) \ \mu m$
- $D^0 \to K^- \pi^+$ $c\tau = (122.9 \pm 0.4) \ \mu m$
- $D_s^+ \rightarrow \varphi \pi^+, \varphi \rightarrow K^- K^+$ $c\tau = (149.9 \pm 2.1) \ \mu m$
- $\Lambda_{\rm c}^+ \to {\rm K}^- {\rm \pi}^+ {\rm p}$ $c\tau = (59.9 \pm 1.8) \ \mu {\rm m}$
- *Charge conjugate particles are also measured

Primary Vertex (PV)

11.06.20

D[±] **AND D**⁰ **NUCLEAR MODIFICATION FACTOR** $D^{0} (STAR): Phys. Rev. C 99, 034908, (2019).$ $T^{\pm} (STAR): Phys. Lett. B 655, 104 (2007).$ $T^{\pm} (STAR): Phys. Lett. B 655, 104 (2007).$ D (WICH) Phys. Lett. B 655, 104 (2007). D (WICH) Phys. Lett. B 655, 104 (2007).


 $\begin{array}{l} D^0 \mbox{ (STAR): Phys. Rev. C 99, 034908, (2019)} \\ \pi^{\pm} \mbox{ (STAR): Phys. Lett. B 655, 104 (2007).} \\ D \mbox{ (ALICE): JHEP 03, 081 (2016).} \\ h^{\pm} \mbox{ (ALICE): Phys. Lett. B 720, 52 (2013).} \\ LBT: Phys. Rev. C 94, 014909, (2016). \\ Duke: Phys. Rev. C 97, 014907, (2018). \end{array}$

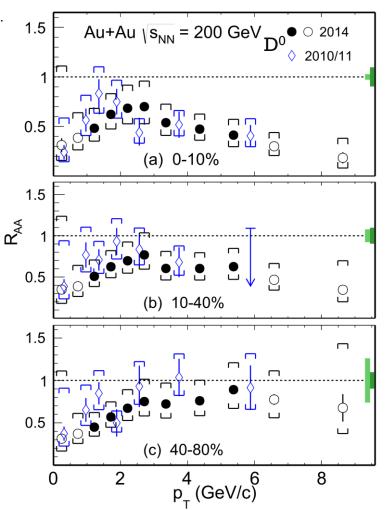
Nuclear modification factor:

 $R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N_{\rm D}^{\rm AA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle\,{\rm d}N_{\rm D}^{\rm pp}/{\rm d}p_{\rm T}}$

- Reference: combined D⁰ and D* measurement in 200 GeV p+p collisions using 2009 STAR data
- D mesons suppressed in central Au+Au collisions
 - Suppression of D⁰ mesons at high p_T comparable to light flavor hadrons at RHIC and D mesons at LHC
 - Reproduced by models incorporating both radiative and collisional energy losses
 - Similar level of suppression for D^\pm and D^0

Strong interactions between charm quarks and the medium

D[±] AND **D**⁰ NUCLEAR MODIFICATION FACTOR D⁰ 2014 (STAR): Phys. Rev. C 99, 034908, (2019).

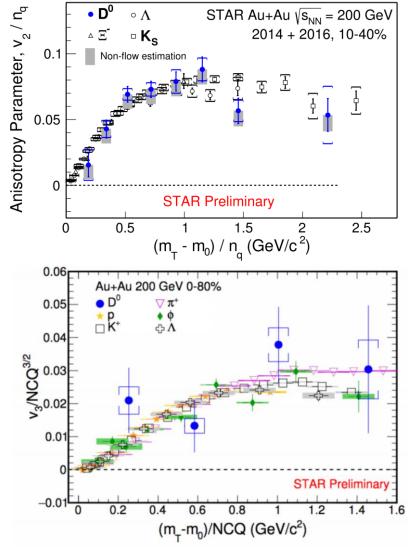


D⁰ 2010/11 (STAR): Phys. Rev. C 99, 034908, (2019).

• Nuclear modification factor:

 $R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N_{\rm D}^{\rm AA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle {\rm d}N_{\rm D}^{\rm pp}/{\rm d}p_{\rm T}}$

- Centrality dependence of D⁰ mesons R_{AA}
 - Suppression at high p_{T} increases with collision centrality
 - Low-p_T D⁰ suppressed for all studied centrality classes of Au+Au collisions
- Integrated $R_{AA} < 1$ for D⁰ mesons



D⁰ **COLLECTIVE FLOW**

• Elliptic (triangular) flow = second (third) order Fourier coefficient v_2 (v_3) of the azimuthal distribution:

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}p} = \frac{1}{2\pi}\frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}\left[1 + \sum_{n=1}^{\infty} 2v_{n}\cos(n(\phi - \Psi_{n}))\right]$$

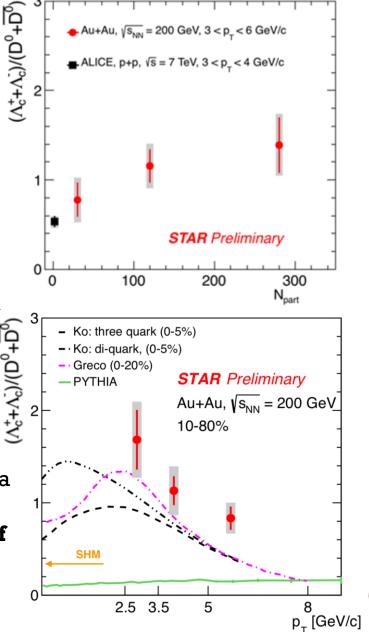
- D⁰ v₂ and v₃ follow the Number of Constituent Quarks (NCQ) scaling
 - Significant elliptic and triangular flow of D⁰
 - Strong collective behavior of the charm quarks
- The c quarks might have achieved local thermal equilibrium with the QGP

 $v_2 D^0$ (2014): Phys. Rev. Lett, 118, 212301 (2017) v_2 , light flavor: Phys. Rev. C 77, 054901 (2008).

Λ_c/D^0 YIELD RATIO ENHANCEMENT

Open-charm baryon/meson yield ratio

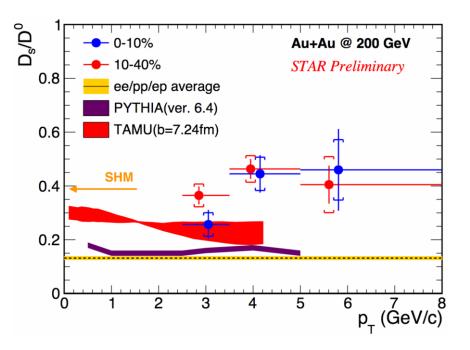
CENTRALITY DEPENDENCE


- Enhancement of the ratio increases towards central collisions
- The value in peripheral collisions is consistent with p+p measurement at $\sqrt{s} = 7$ TeV by ALICE

$p_{\rm T}$ DEPENDENCE

ALICE: JHEP 04 (2018) 108 Ko: Phys.Rev.C 79 (2009) 044905 Greco: Eur.Phys.J.C (2018) 78:348 SHM: Phys. Lett. B (2003), 571, 36-44

- Significant enhancement with respect to PYTHIA prediction
- Coalescence models closer to data than PYTHIA
- Extrapolated ratio from the Statistical Hadronization Model (SHM) underpredicts data

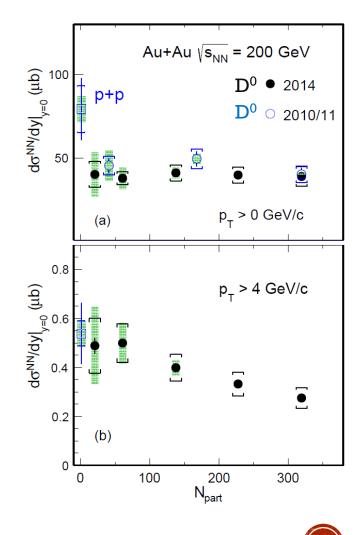

Importance of coalescence hadronization of charm quarks

D_s/D^0 yield ratio enhancement

- D_s/D^0 yield ratio as a function of p_T
- Enhancement of D_s/D⁰ ratio in Au+Au collisions with respect to PYTHIA baseline and elementary collisions (ee/pp/ep average)
- Comparison to models:
 - TAMU model with coalescence hadronization shows enhancement, but under-predicts data
 - SHM in good agreement with data
- Importance of coalescence hadronization of charm quarks together with enhanced strangeness production

ep/pp/ep avg: EPJ C 76, 397 (2016) TAMU: PRL 110, 112301 (2013) SHM: Phys. Lett. B (2003), 571, 36-44

TOTAL CHARM PRODUCTION CROSS-SECTION



- Total charm production cross-section per binary collision in Au+Au extracted from the measurements of open-charm hadrons
 - *The $\Lambda_{\rm c}$ cross-section was derived using the $\Lambda_{\rm c}/D^0$ yield ratio
- The Au+Au result is consistent with that measured in p+p collisions within the uncertainties

Redistribution of charm quarks among open –charm hadron species

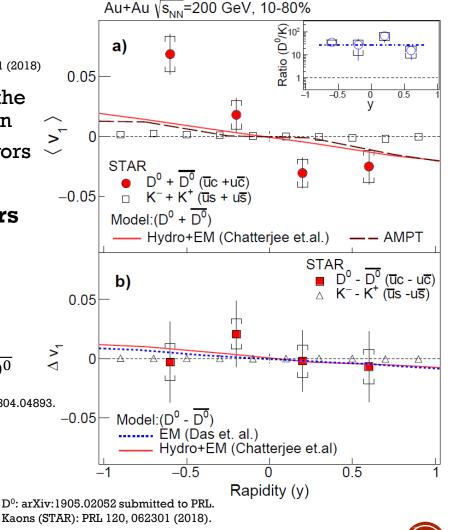
Coll. system	Hadron	$d\sigma/dy$ [µb]
Au+Au at 200 GeV Centrality: 10-40%	\mathbf{D}^0	$41\pm1\pm5$
	D^{\pm}	$18 \pm 1 \pm 3$
	D_{s}	$15 \pm 1 \pm 5$
	\wedge_{c}	78 ± 13 ± 28 *
	Total:	152 ± 13 ± 29
p+p at 200 GeV	Total:	130 ± 30 ± 26

D⁰ 2014 (STAR): Phys. Rev. C 99, 034908, (2019). D⁰ 2010/11 (STAR): Phys. Rev. C 99, 034908, (2019). p+p (STAR): Phys. Rev. D 86 072013, (2012)

11.06.2019

D⁰ DIRECTED FLOW

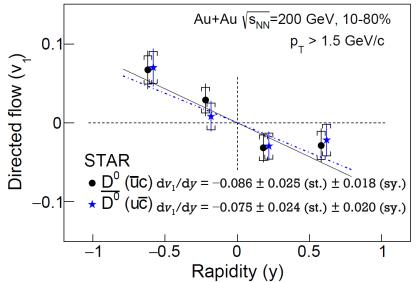
Hydrodynamics Chatterjee, Bozek: Phys Rev Lett 120, 192301 (2018)

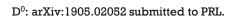

- Difference between the tilt of the bulk and the longitudinal density profile of HF production
- Larger slope dv_1/dy of charm than light flavors

Initial EM field from passing spectators

• Predicted negative dv_1/dy slope for D^0 and positive one for $\overline{D^0}$ Das et. al., Phys Lett B 768, 260 (2017)

Hydrodynamics + EM field


- Negative dv_1/dy slope for both for D^0 and $\overline{D^0}$
- Larger slope for D^0 than $\overline{D^0}$ Chatterjee, Bozek: arXiv:1804.04893.



11.06.2019

D⁰ DIRECTED FLOW

- First evidence of non-zero directed flow (v_1) of D^0 and $\overline{D^0}$ as a function of rapidity (y)
- Negative dv_1/dy slope for both D^0 and $\overline{D^0}$
 - Larger slope than for kaons
- No EM induced splitting observed within the uncertainties
- Measurement of D⁰ directed flow can be used to probe the difference between the tilt of the QGP bulk and the longitudinal density profile of HF production

CONCLUSIONS

- STAR has extensively studied production of open-charm hadrons in heavy-ion collisions utilizing the Heavy-Flavor Tracker
- The c quarks interact strongly with the QGP and are possibly in local thermal equilibrium with the medium
 - D^0 and D^{\pm} mesons are significantly suppressed at high- p_T in central Au+Au collisions
 - D⁰ mesons v_2 and v_3 follow the NCQ scaling
- Coalescence likely plays an important role in hadronization of the charm quarks in A+A collisions
 - Λ_c/D^0 and D_s/D^0 yield ratios are enhanced in Au+Au collisions with respect to the p+p collisions
- Total charm production cross-section per binary collision in Au+Au collisions is consistent with that measured in p+p collisions
 - Redistribution of charm quarks among open-charm hardon species
- Charm quarks can probe initial tilt of the QGP bulk with respect to the longitudinal density profile of HF production
 - D⁰ mesons have larger v_1 slope than light-flavor mesons

THANK YOU FOR ATTENTION

Acknowledgement: This presentation is supported by OPVVV grant CZ.02.1.01/0.0/0.0/16_013/0001569 of the Ministry of Education, Youth and Sports of the Czech Republic

