Measurements of strange and non-strange charm production in PbPb collisions at 5.02 TeV with the CMS detector

Cheng-Chieh Peng

Purdue University

for the CMS Collaboration

Strangeness in Quark Matter 2019
Motivation

- Heavy quarks produced early, experience the full evolution of the medium

- $D^0 R_{AA}$: nuclear modification factor
 - Flavor dependent energy loss

- $D^0 \nu_n$ harmonics in PbPb:
 - At low p_T, the degree of medium thermalization
 - At high p_T, the path length dependence of energy loss

- D^0 elliptic flow ν_2 in high multiplicity pPb
 - Evidence of QGP in small system?
 - Heavy flavor hydrodynamic flow?
D Meson Reconstruction & Selection

- $D^0 \rightarrow K\pi^+ \; BR = 3.89\% \; c\tau \approx 120 \, \mu m$

- D^0 candidates :
 - pairing two charged tracks
 - kinematic fitter

- D^0 candidates selection (Rectangular Cuts optimized using TMVA)
 - Pointing angle $\alpha < 0.12 - 0.15$
 - 3D decay length significance $> 3.0 - 4.8$
 - D^0 candidate vertex probability $> 0.05 - 0.25$
 - Distance of Closet Approach (DCA) $< 0.008 \, \text{cm} \; (\text{in } \nu_\tau \text{ analysis })$
D⁰ Signal Extraction by Invariant Mass Fit

D⁰ invariant mass distributions are fitted by

- **Double Gaussian (Signal)**
- **3rd order polynomial (Combinatorial)**
- **Single Gaussian (K-π swapped. No PID. Candidates with wrong mass assignment on tracks)**

PLB 782,474(2018)
• D^0 in data is a mixture of prompt and non-prompt D^0

• Fit DCA of data with prompt and non-prompt D^0 DCA MC templates

PLB 782,474(2018)
D^0 R_{AA} and Comparison with Model Calculations

Charm quarks lose a significant fraction of energy in the QGP medium.

- R_{AA} minimal near $p_T \sim 10$ GeV/c and then increases.
- At high p_T, both pQCD and AdS/CFT predictions reasonably agree with R_{AA} results.
- At low p_T, PHSD with shadowing describes data better.

Graphical Representation

- ** CMS**
 - $D^0 + \bar{D}^0$
 - R_{AA}
 - $|y| < 1$
 - Cent. 0-10%
 - p_T (GeV/c)

References

- PLB 782,474(2018)
- SQM 2019

Author

Cheng-Chieh Peng
At low p_T, a hint of smaller suppression of D^0 and non-prompt J/ψ than charged particles.

At high p_T, the $D^0 R_{AA}$ is similar to charged particles R_{AA}.

The non-prompt J/ψ appear to be less suppressed than the D for p_T smaller than ~ 15 GeV.

References:

- JHEP 04(2017)39
- PRL 119, 152301(2017)
- PLB 782, 474(2018)
- EPJC 78 (2018) 509
$\mathbf{D^0} \; \nu_n$ in PbPb collisions at 5.02 TeV

- ν_n obtained by scalar product method

(Luzum, Ollitrault PRC 87 (2013), 044907)

- Simultaneous fit on mass distribution and ν_n vs. mass

\[
\nu_n^{S+B}(m) = \alpha(m)\nu_n^S(m) + [1 - \alpha(m)]\nu_n^B(m)
\]

\[
\alpha(m) = \frac{\text{Sig}(m) + \text{Swap}(m)}{\text{Sig}(m) + \text{Swap}(m) + \text{Bkgd}(m)}
\]

PRL 120,202301(2018)
Positive prompt $D^0 \nu_2$ is observed:

- Low p_T : charm quark collective motion
- High p_T : path length dependence of energy loss

Similar p_T dependence to charged particle

At centrality 10-30% and 30-50% , the $\nu_2(D^0) < \nu_2$(charged particle)

Mass ordering or other effect?
Prompt $D^0 \nu_3$ Result

CMS PbPb $\sqrt{s_{NN}} = 5.02$ TeV

- D^0, $|y| < 1.0$
- Charged particle, $|\eta| < 1.0$

- Low p_T: ν_3 (prompt D^0) > 0; Hight p_T: ν_3 (prompt D^0) ≈ 0
- Similar p_T dependence to charged particle

PRL 120,202301(2018)
Prompt $D^0 \nu_3$ Result

- Low p_T : ν_3 (prompt D^0) > 0; High p_T : ν_3 (prompt D^0) ≈ 0
- Similar p_T dependence to charged particle
- Little centrality dependence
 - Indicate a constant initial geometry
- ν_2 and ν_3 results provide constrain on models
D⁰ ν₂ in pPb Collisions at 8.16 TeV

- Two-particle correlation method to extract ν₂
 - Correlate D⁰ and charged hadrons (|Δη| gap = 1)
 - Perform Fourier fits the two particle correlation

\[ν²_{D⁰}(p_T) = \frac{V_{2Δ}(p_T^{D⁰}, p_T^{assoc})}{\sqrt{V_{2Δ}(p_T^{assoc}, p_T^{assoc})}} \]

- D⁰ ν₂^{sub}, to reduce the non-flow contributions
 - subtracting the V₂Δ in low multiplicity (Ntrk <35)

- Simultaneous fit on mass distribution and ν₂ vs. mass

PRL 121,082301(2018)
D⁰ Meson and Strange Hadrons v_2 vs p_T

- Significant D^0 v_2 have been observed in high multiplicity pPb

$\nu_2^{D^0} < \nu_2^{\text{strange hadrons}}$

PRL 121,082301(2018)
D⁰ Meson 𝜈₂ vs 𝑝ₜ and PbPb Collisions

- **pPb**
 - 185 ≤ N_{offline} < 250
 - -1.46 < y_{cm} < 0.54

- **PbPb**
 - Centrality 30-50%
 - ⟨N_{offline}⟩ = 919
 - -1 < y_{cm} < 1

- \(D⁰ \, 𝜈₂^{pPb} < 𝜈₂^{PbPb} \) for a given \(pₜ \)

- Similar mass ordering for pPb and PbPb

PRL 121,082301(2018)
Number of constituent quarks (NCQ) scaling is motivated by quark coalescence model

In pPb, \(D^0 \) \(v_2/n_q \) is smaller than strange hadrons for \(KE_T/n_q < 2 \)

In PbPb, \(D^0 \) \(v_2/n_q \) follow the same trend as other particle species
Summary

- **$D^0 R_{AA}$ at 5.02 TeV PbPb**
 - Strong suppression of $D^0 R_{AA}$
 - $R_{AA}(D^0) \sim R_{AA}(h^{\pm})$ at high p_T
 - $R_{AA}(D^0) > R_{AA}(h^{\pm})$ at low p_T

- **$D^0 \nu_2$ at 8.16 TeV pPb**
 - Significant ν_2 in high multiplicity events
 - $\nu_2(D^0) < \nu_2$ (strange hadrons)
The CMS Trigger and Data Sets

Data sets

• LHC Run II 2015 pp and PbPb at $\sqrt{s_{NN}} = 5.02$ TeV and 2016 pPb data at $\sqrt{s_{NN}} = 8.16$ TeV
• Minimum bias sample for $p_T < 20$ GeV/c and triggered samples for $p_T > 20$ GeV/c
• Dedicated HLT D meson filters to enhance the statistics of very high p_T D mesons
• High multiplicity trigger to select high multiplicity pPb events comparable to peripheral PbPb

Triggering system

Hardware Level 1
Jet Trigger Selections

Track Selections
in Software Triggers

D^0 Selections

Level 1 (L1) jet algorithm with online background subtraction

Track seed p_T cut applied:
- $p_T > 2$ GeV/c for pp/pPb
- $p_T > 8$ GeV/c for PbPb

D^0 online reconstruction
Loose selections based on D^0 vertex displacement
Scalar Product Method

\[Q_n = \sum_j w_j e^{in\phi_j} \]

Sum over tracks (tracker), or towers (HF)

\(w_j \): tower \(E_T \) for HF, track \(p_T \) for tracker

\[v_n \{SP\} = \frac{\langle Q_n \cdot Q_n^* \rangle}{\sqrt{\langle Q_{nA} \cdot Q_{nA}^* \rangle \langle Q_{nB} \cdot Q_{nB}^* \rangle \langle Q_{nC} \cdot Q_{nC}^* \rangle}} \]

Scaling factor from 3 sub events

- Large \(\eta \) gap applied (\(|\Delta\eta|>3.0\))
- \(v_n \{SP\} \), non-ambiguous measure of \(\sqrt{v_n^2} \)

Luzum, Ollitrault PRC 87 (2013), 044907
• Fourier series describing the azimuthal anisotropy of particle spectrum
\[
\frac{dN}{d\phi} \propto 1 + \sum 2\nu_n(p_T, \eta)\cos[n(\phi - \psi_n)]
\]

• Two-particle correlation method to extract \(\nu_2 \)
 – Correlate \(D^0 \) and charged hadrons (\(\Delta\eta \) gap = 1)
 – Perform Fourier fits the two particle correlation distribution for \(D^0 \) to extract \(V_{2\Delta}(p_T^{D^0}, p_T^{assoc}) \)
 – \(D^0 \nu_2(p_T) \) can be obtain by :
\[
\nu_2^{D^0}(p_T) = \frac{V_{2\Delta}(p_T^{D^0}, p_T^{assoc})}{\sqrt{V_{2\Delta}(p_T^{assoc}, p_T^{assoc})}}
\]