

Otón Vázquez Doce (Technische Universität München, oton.vd@cern.ch) for the ALICE Collaboration

Femtoscopy

• Based on the correlation function:
$$C(k^*) = \frac{P(\overline{p_a}, \overline{p_b})}{P(\overline{p_a})P(\overline{p_b})}$$

where k^* = reduced relative momentum, with $\overline{p_a^*} + \overline{p_b^*} = 0$.

- Experimentally obtained as $C(k^*) = \mathcal{N} \frac{N_{Same}(k^*)}{N_{Mixed}(k^*)}$
 - Generally, the experimental correlation function accounts for Ο the genuine correlation and it is affected by residual correlations and finite momentum resolution [1]

Data analysis

- pp collisions at \sqrt{s} = 13 TeV of ALICE Run 2
 - Analyzed 10⁹ events
 - High multiplicity (HM) trigger: 0.1% highest multiplicities with respect to Minimum Bias
- $9.3 \times 10^6 \Xi^- \oplus \Xi^+$ selected candidates
 - identified by $\Xi \rightarrow \Lambda \pi \rightarrow (p\pi)\pi$ decay. Purity 92%.
 - 3×10^4 p- Ξ^- p- Ξ^+ pairs at *k**<200 MeV/*c*
- $1.2 \times 10^6 \ \Omega^- \oplus \Omega^+$ selected candidates
 - identified by $\Omega \rightarrow \Lambda K \rightarrow (p\pi)K$ decay. Purity 75%.

♦ p-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ □ Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

 $\left<\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta
ight>_{\left|\eta
ight|<~0.5}$

200

*k** (MeV/*c*)

- PYTHIA8

..... EPOS LHC

···· DIPSY

 10^{-3}

• Cross-checked by p-Λ analysis

Effect of strong short-lived resonances computed for all baryons (statistical

hadronization model)

resonances taken into account

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 $m_{\rm T}$ (GeV/ c^2) ALI-PREL-315640

ALICE Preliminary

p-='

- At which densities hyperons appears in the core of neutron stars?
 - Do Ξ take part in the picture? Ο
 - Depends on the Ξ single particle potential in pure neutron matter, predicted to be repulsive by Lattice QCD calculations

Direct observation of an attractive p-E⁻ interaction, firstly observed by ALICE in p-Pb collisions [6]

- $p-\Omega^{-}$
- The p- Ω interaction can only be accessed experimentally via femtoscopy
- Lattice QCD and phenomenological models predict a N- Ω interaction attractive at all distances (${}^{5}S_{2}$ channel), leading to the possible existence of $a N\Omega$ di-baryon, with several different predictions for the binding energy ($E_{\rm b}$)
- The ${}^{3}S_{1}$ channel is modeled by complete absorption at short distances r < 2 fm

ALICE data compared with:

• Coulomb only hypothesis excluded by > 5σ

- Femtoscopic measurements sensitive to differences in potentials
 - Test of HAL-QCD model allows to apply the conclusions to the Ο description of neutron stars \Rightarrow stiffer Equation of State

References:

[1] ALICE Collaboration, Phys.Rev. C99 (2019) no.2, 024001. [2] ALICE Collaboratin, Nature Phys. 13 (2017) 535-539. [3] D. L. Mihaylov et al., EPJ C 78 (2018) 394. [4] HAL QCD Collaboration, arXiv:1809.08932. [5] M. M. Nagels et al., Phys. Rev. C 99 (2019) 044003. [6] ALICE Collaboration, arXiv:1904.12198 [nucl-ex]. [7] T. Iritani et al., arXiv:1810.03416. [8] T. Sekihara et al., Phys. Rev. C 98, 015205 (2018). [9] K. Morita, A. Ohnishi, F. Etminan, T. Hatsuda, Phys. Rev. C 94 (2016), 031901. [10] Etminan et al. (HAL QCD Collaboration), Nucl. Phys. A928, 89 (2014).

- pp *\s* = 13 TeV 6 – • Fits [9] to Lattice calculations High-Mult. (0-0.072% INEL) (HAL-QCD [10]) with heavy \bigcirc p- $\Omega^{-} \oplus \overline{p} - \overline{\Omega}^{+}$ quark masses: Coulomb + $V_1 ({}^5S_2 + {}^3S_1)$ Coulomb + V_{11} (${}^{5}S_{2} + {}^{3}S_{1}$) - V_{T} : No N Ω bound state Coulomb + V_{III} (${}^{5}S_{2} + {}^{3}S_{1}$) 3 $-V_{II} : E_{h} = 6.3 \text{ MeV}/c^{2}$ ----- $p-\Omega^{\overline{}} \oplus \overline{p}-\overline{\Omega}^{+}$ sideband background $-V_{III}^{-}: \tilde{E}_{h} = 26.9 \text{ MeV}/c^{2}$ 2 200 100 *k** (MeV/*c*) ALI-PREL-315625
- The small source size of pp collisions and the high purity of the sample enhances the **sensitivity of the ALICE data to interaction parameters**
- The Coulomb-only hypothesis is excluded (~ 6σ) showing the strong attractive character of the interaction.
- Models predicting large binding energies for the NΩ di-baryon are excluded by ALICE data