Femtoscopic studies on proton-Ξ^- and proton-Ω^- correlations with ALICE

Otón Vázquez Doce (Technische Universität München, oton.vd@cern.ch) for the ALICE Collaboration

Femtoscopic studies

Based on the correlation function:

\[C(k^*) = \frac{P(p_a, p_b)}{P(p_a)P(p_b)} \]

where \(k^* \) = reduced relative momentum, with \(p_a^2 + p_b^2 = 0 \).

Experimentally obtained as:

\[C(k^*) = \frac{N_{\text{Same}}(k^*)}{N_{\text{Mixed}}(k^*)} \]

- Generally, the experimental correlation function accounts for the genuine correlation and is affected by residual correlations and finite momentum resolution [1].

- Theoretically formulated as:

\[C(k^*) = \int \Delta r(r, k) |\psi(r, k)|^2 dr \]

Data analysis

pp collisions at \(\sqrt{s} = 13 \text{ TeV} \) of ALICE Run 2

- Analyzed 10^6 events
- High multiplicity (HM) trigger: 0.1% highest multiplicities with respect to Minimum Bias

- 9.3\times10^5 Ξ^-\Xi^- selected candidates
 - Identified by \(\Xi^-\rightarrow\Lambda\pi\rightarrow(p\pi\pi) \) decay. Purity 92%.
 - 3\times10^4 Ω^-p-Ω^- pairs at \(k^*<200 \text{ MeV}/c \)

- 1.2\times10^6 Ω^-\Omega^- selected candidates
 - Identified by \(\Omega^-\rightarrow\Lambda k\rightarrow(p\pi\pi) \) decay. Purity 75%.
 - 6.5\times10^6 Ω^-p-Ω^- pairs (700 at \(k^*<100 \text{ MeV}/c \))

Determination of the source characteristics from the p-p analysis

- **Ansatz:** in small collision systems the source is similar for all baryon pairs.

- **Size of the source core** is determined from the \(k^* \) correlation function.
 - The p-p interaction is well known → determination of the source size.

- Effect of strong short-lived resonances computed for all baryons (statistical hadronization model).

- Theoretical correlation function computed by CATS [2] from the shape of the local potential.

- The size of the source core is determined by the correlation function:

\[C(k^*) = \int \Delta r(r, k) |\psi(r, k)|^2 dr \]

References

ALICE data compared with:

- **Lattice HAL-QCD calculations** [4]
- **ESC16:** Meson exchange model [5]

p^-Ξ^-:

- At which densities hyperons appears in the core of neutron stars?
 - Do Ξ take part in the picture?
 - Depends on the Ξ single particle potential in pure neutron matter, predicted to be repulsive by Lattice QCD calculations

- **Direct observation of an attractive p^-Ξ^- interaction,** firstly observed by ALICE in p-Pb collisions [6]
 - Coulomb only hypothesis excluded by > 5σ

- Femtoscopic measurements sensitive to differences in potentials

p^-Ω^-:

- The p-Ω^- interaction can only be accessed experimentally via femtoscopic

- Lattice QCD and phenomenological models predict a N-Ω^- interaction attractive at all distances (\(S^3 \) channel), leading to the possible existence of a NΩ^- di-baryon, with several different predictions for the binding energy (\(E_b \))

- The \(S^3 \) channel is modeled by complete absorption at short distances \(r < 2 \text{ fm} \)

ALICE data compared with:

- **Lattice HAL-QCD potential with physical quark masses** [7]
 - \(\Sigma^- \rightarrow p^0 \pi^- \) decay. Purity 75%.
 - Sekihara, meson exchange model [8]

ALICE preliminary:

- Fits [9] to Lattice calculations (HAL-QCD [10]) with heavy quark masses:
 - \(V_\Sigma^- = 6.3 \text{ MeV}/c^2 \)
 - \(V_\Xi^- = 26.9 \text{ MeV}/c^2 \)

- The small source size of pp collisions and the high purity of the sample enhances the sensitivity of the ALICE data to interaction parameters

- The Coulomb-only hypothesis is excluded (~6σ) showing the strong attractive character of the interaction.

- Models predicting large binding energies for the NΩ^- di-baryon are excluded by ALICE data

References