

AK and Ξ^-K^\pm femtoscopy in Pb-Pb collisions at 2.76 TeV from ALICE

Jesse Thomas Buxton The Ohio State University on behalf of the ALICE Collaboration

Motivation

- Study femtoscopic AK correlations
 - Result from strong final-state interactions (FSI)
- Characterize AK pair emission region
- Extract AK interaction scattering parameters
 - Never before measured
- $^{\scriptscriptstyle \succ}$ $\Xi^{^-}K^{^\pm}$ study to investigate difference in ΛK^+ and ΛK^-

Femtoscopy

- Exploit two-particle correlations of hadrons
- Probe space-time freeze-out structure at femtometer scale (10⁻¹⁵ m)
- Measure "regions of homogeneity" ^[1]
- > Unique environment to measure nuclear scattering parameters

Theory

Koonin-Pratt Equation ^[2,3]

$$C(\mathbf{P},\mathbf{k}^*) = \int S_{\mathbf{P}}(\mathbf{r}^*) |\Psi(\mathbf{k}^*,\mathbf{r}^*)|^2 \mathrm{d}^3 r^*$$

- $S_{p}(\mathbf{r}^{*})$ = source distribution
- $\Psi(\mathbf{k}^*, \mathbf{r}^*)$ = two-particle wave-function
- k* = |k*| = momentum of one particle in pair rest frame

Experiment

$$C(k^*) = \frac{A(k^*)}{B(k^*)}$$

- A(k*) : signal distribution (same-event)
- B(k*) : reference distribution (mixed events)

- Lednický and Lyuboshitz formulation ^[4]
 - Isotropic Gaussian profile & effective range approximation

$$\Psi(\mathbf{k}^*, \mathbf{r}^*) = e^{-i\mathbf{k}^* \cdot \mathbf{r}^*} + f^S(k^*) \frac{e^{ik^*r^*}}{r^*}$$

$$f^{S}(k^{*}) = \left(\frac{1}{f_{0}^{S}} + \frac{1}{2}d_{0}^{S}k^{*2} - ik^{*}\right)^{-1}$$

$$\sigma = 4\pi \left| f^2 \right|$$

Nice analytic form

$$C(k^*) = 1 + \sum_{S} \rho_S \left[\frac{1}{2} \left| \frac{f^S(k^*)}{R} \right|^2 \left(1 - \frac{d_0^S}{2\sqrt{\pi R}} \right) + \frac{2\Re f^S(k^*)}{\sqrt{\pi R}} F_1(2k^*R) - \frac{\Im f^S(k^*)}{R} F_2(2k^*R) \right]$$

- *f*_o^s complex scattering length
- d₀^s effective range of interaction
- *R* source size

Residual Correlations

- Measured CF is combination of primary signal and transformed residuals^[5]
- > λ_{ij} control strength of contribution

- Modeling parent CF
 - Assume same R, f₀^s, d₀^s as ΛK system
 - $\Xi^{-}K^{\pm}$ data or Coulomb-only simulation

$$C_{\text{measured}}(k_{\Lambda K}^{*}) = \mathcal{N}\left(1 + \lambda_{\Lambda K}'[C_{\Lambda K}(k_{\Lambda K}^{*}) - 1] + \sum_{i,j} \lambda_{ij}'[\underline{C_{ij}(k_{\Lambda K}^{*})} - 1]\right)$$

$$\lambda_{ij}' = \lambda_{\text{Fit}} \underline{\lambda_{ij}}$$

$$\sum_{i,j} \lambda_{ij}' = \lambda_{\text{Fit}} \sum_{i,j} \underline{\lambda_{ij}} = \lambda_{\text{Fit}}$$

$$C_{ij}(k_{\Lambda K}^{*}) = \frac{\sum_{k_{ij}^{*}} C_{ij}\left(k_{ij}^{*}\right) T\left(k_{ij}^{*}, k_{\Lambda K}^{*}\right)}{\sum_{k_{ij}^{*}} T\left(k_{ij}^{*}, k_{\Lambda K}^{*}\right)}$$

Pair System	λ-factor
Primary	0.527
Σ ⁰ K+	0.111
Ξ ⁰ K+	0.039
Ξ-K+	0.050
Other	0.226
Fakes	0.048

- > Significant non-femtoscopic background at large k^*
- Effect due primarily to particle collimation associated with elliptic flow ^[6]
 - Results from mixing events with unlike event-plane angles
- > THERMINATOR 2 simulation to model and account for in fit

- > All analyses fit simultaneously across all centralities
 - + For each centrality R and $\lambda_{\rm Fit}$ shared among all systems
 - Unique set of scattering parameters for each ΛK charge combination (ΛK^+ , ΛK^- , ΛK^0_s)
- Residual contributions from resonance feed-down included
- Non-femtoscopic background and momentum resolution corrections applied

- ℜf₀ is **positive** for ΛK⁻ and ΛK⁰_s → attractive strong interaction
- > $\Re f_0$ is **negative** for ∧K⁺ → **repulsive** strong interaction

Ξ⁻K[±] Analysis

E⁻K[±] Data vs. Coulomb Only

THE OHIO STATE

UNIVERSITY

Outlook

- Inclusion of strong and Coulomb interactions
 - No nice analytic form
 Must integrate by hand

$$\Psi_{\mathbf{k}^{*}}(\mathbf{r}^{*}) = e^{i\delta_{c}}\sqrt{A_{c}(\eta)} \left[e^{-i\mathbf{k}^{*}\cdot\mathbf{r}^{*}}F(-i\eta,1,i\xi) + f_{c}(k^{*})\frac{\tilde{G}(\rho,\eta)}{r^{*}} \right]$$
$$f_{c}(k^{*}) = \left[\frac{1}{f_{0}} + \frac{1}{2}d_{0}k^{*2} - \frac{2}{a_{c}}h(\eta) - ik^{*}A_{c}(\eta) \right]^{-1}$$

Summary

- > AK femtoscopic analysis presented for Pb-Pb collisions at 2.76 TeV
 - First measurement of AK scattering parameters
 - Pair emission source radii extracted for 0-10%, 10-30%, and 30-50% centralities
- > Ξ⁻K[±] femtoscopic analysis introduced for Pb-Pb collisions at 2.76 TeV
 - Goal to help explain striking difference in ΛK⁺ and ΛK⁻ correlations observed at low k*
 - A Coulomb-only fit cannot describe the data

Thank you

References

- S. Akkelin and Y. Sinyukov, "The HBT-interferometry of expanding sources," *Physics Letters* B356 (1995) 525 – 530.
- [2] S. E. Koonin, "Proton Pictures of High-Energy Nuclear Collisions," Phys. Lett. B70 (1977) 43-47.
- [3] S. Pratt, T. Csorgo, and J. Zimanyi, "Detailed predictions for two pion correlations in ultrarelativistic heavy ion collisions," *Phys. Rev.* C42 (1990) 2646–2652.
- [4] R. Lednicky and V. L. Lyuboshits, "Final State Interaction Effect on Pairing Correlations Between Particles with Small Relative Momenta," Sov. J. Nucl. Phys. 35 (1982) 770.
- [5] A. Kisiel, H. Zbroszczyk, and M. Szymaski, "Extracting baryon-antibaryon strong interaction potentials from pΛ̄ femtoscopic correlation functions," *Phys. Rev.* C89 no. 5, (2014) 054916, arXiv:1403.0433 [nucl-th].
- [6] A. Kisiel, "Non-identical particle correlation analysis in the presence of non-femtoscopic correlations," *Acta Physica Polonica B* **48** (04, 2017) 717.
- [7] A. Kisiel, "Non-identical particle correlation analysis in the presence of non-femtoscopic correlations," XII Workshop on Particle Correlations and Femtoscopy, 12-16 June 2017, Nikhef, Amsterdam, The Netherlands. Conference Talk.
- [8] M. A. Lisa, S. Pratt, R. Soltz, and U. Wiedemann, "Femtoscopy in relativistic heavy ion collisions," Ann. Rev. Nucl. Part. Sci. 55 (2005) 357–402, arXiv:nucl-ex/0505014 [nucl-ex].

BACKUP

Non-femtoscopic Background

ALICE

- > THERMINATOR 2: THERMal heavy IoN geneATOR 2
 - Statistical hadronization in relativistic heavy-ion collisions
 - Any freeze-out hypersurface + expansion velocity field can be implemented
- Demonstrates background is scale factor
 Cf w/o Ba

Simulation Only: Interaction achieved by assuming scattering parameters, and weighting the numerators in the simulation

m_{T} Scaling of Radii

- > Expect asymmetry μ_{out} in the outward direction
- > Hydrodynamic response on higher m_{T} particles
 - confines them to smaller homogeneity regions
 - pushes them further in the out direction
- \succ Within 1D model used, a non-zero μ_{out} induces larger extracted source radii

- Numerically integrate Koonin-Pratt equation
 - + Allows for offset μ_{out} to be implemented
- > Increasing μ_{out} makes source appear larger

Shifts with THERM. 2

Jesse T. Buxton (OSU) | SQM 2019

THE OHIO STATE

UNIVERSITY

Strong + Coulomb

$$\Psi_{\mathbf{k}^*}(\mathbf{r}^*) = e^{i\delta_c} \sqrt{A_c(\eta)} \left[e^{-i\mathbf{k}^* \cdot \mathbf{r}^*} F(-i\eta, 1, i\xi) + f_c(k^*) \frac{\tilde{G}(\rho, \eta)}{r^*} \right]$$

$$f_c(k^*) = \left[\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - \frac{2}{a_c}h(\eta) - ik^*A_c(\eta)\right]^{-1}$$

$$h(\boldsymbol{\eta}) = 0.5[\boldsymbol{\psi}(i\boldsymbol{\eta}) + \boldsymbol{\psi}(-i\boldsymbol{\eta}) - \ln(\boldsymbol{\eta}^2)]$$
$$\boldsymbol{\psi}(z) = \Gamma'(z)/\Gamma(z)$$

 δ_c = Coulomb s-wave phase shift $A_c(\eta)$ = Coulomb penetration factor $ilde{G} = \sqrt{A_c}(G_0 + iF_0)$

 $F_0(G_0) =$ regular (singular) s-wave Coulomb functions

$$\rho = k^* r^*$$

$$\eta = (k^* a_c)^{-1}$$

$$\xi = \mathbf{k}^* \cdot \mathbf{r}^* + k^* r^*$$

$$= \rho (1 + \cos \theta^*)$$

$$a_c = (\mu z_1 z_2 e^2)^{-1}$$

Analysis Details

Analysis Overview

Charged tracks identified with TPC and TOF detectors • Purity K[±] ≈ 97% Neutral V0s identified from decay Negative products Daughter • $\Lambda \rightarrow p\pi^-$ (Purity $\approx 95\%$) • $K_{S}^{0} \rightarrow \pi^{+}\pi^{-}$ (Purity $\approx 98\%$) Misidentification cuts • Remove K^0_{S} contamination in $\Lambda(\overline{\Lambda})$ and vice versa > V0 shared daughter cut Pair cuts Shared daughter Average separation IP Nea. → V0 Daughter-V0 Daughter (ΛK_{s}^{0}) Daughter to Primary Vtx → V0 Daughter-Track (ΛK±)

K[±] Selection

K^{\pm} selection			
Kinematic range			
$ \eta $	< 0.8		
p_{T}	$0.14 < p_{\rm T} < 1.5 \ {\rm GeV}/c$		
Track quality and selection			
FilterBit	7		
Number of clusters in the TPC	> 80		
χ^2/N_{DOF} for (ITS, TPC) clusters	< (3.0, 4.0)		
DCA to primary vertex (XY, Z)	< (2.4, 3.0) cm		
Remove particles with any kink labels	true		
$N\sigma$ to primary vertex	< 3.0		
${f K}^{\pm} { m identification}$			
PID Probabilities			
K	> 0.2		
(π,μ,p)	< (0.1, 0.8, 0.1)		
Most probable particle type (fMostProbable $=$)	Kaon (3)		
TPC and TOF N σ Cuts			
$p < 0.4 \; { m GeV}/c$	$N_{\sigma K,TPC} < 2$		
0.4	$N_{\sigma K,TPC} < 1$		
0.45	$N_{\sigma K,TPC} < 3$		
	$N_{\sigma K, TOF} < 2$		
0.80	$N_{\sigma K,TPC} < 3$		
	$N_{\sigma K, TOF} < 1.5$		
$p > 1.0 \ { m GeV}/c$	$N_{\sigma K,TPC} < 3$		
	$N_{\sigma K, TOF} < 1$		

K^\pm selection - Misidentification Cuts

Electron Rejection: Reject if			$N_{\sigma e^-, TPC} < 3$
Pion Rejection: Reject if:			
$p < 0.65~{\rm GeV}/c$	TOF and TPC available		$N_{\sigma\pi,TPC} < 3$
		p < 0.5 GeV/c	$\frac{N_{\sigma\pi, TOF} < 3}{N_{\sigma\pi, TPC} < 3}$
	Only TPC available	p < 0.0 GeV/c 0.5	$N_{\sigma\pi, TPC} < 0$ $N_{\sigma\pi, TPC} < 2$
0.65			$N_{\sigma\pi,TPC} < 5$
0.00 < <i>p</i> < 1.0 dc v/ c	r		$N_{\sigma\pi,TOF} < 3$
p > 1.5 GeV/c			$N_{\sigma\pi,TPC} < 5$
<i>p</i> > 1.0 Gev/c			$N_{\sigma\pi,TOF} < 2$

$\Lambda(\overline{\Lambda})$ Reconstruction

$\Lambda \rightarrow p\pi^{-} (\overline{\Lambda})$	$\rightarrow \overline{p}\pi^{+}$)		Λ reconstruction		
 cτ = 7.9 	cm		$ \eta $		< 0.8
	ng ratio ~ 64%	6	p_{T}		> 0.4 GeV/c
	•		$ m_{\rm inv} - m_{\rm PDG} $		$< 3.8 { m MeV}$
 Purity(Λ) ~ Purity(Λ) ~ 95% 		DCA to prim. vertex		$< 0.5 \mathrm{~cm}$	
		Cosine of pointing angle		> 0.9993	
	V0 Pointing An	gle	OnFlyStatus		false
			Decay Length		< 60 cm
			Shared Daughter C		true
	ρ _{π+p} / (Misidentification Cut		true
	I 1			Daughter Cuts (π and	nd p)
	Θ_{pa}	/p	$ \eta $		< 0.8
π-			Number of clusters in the TPC		> 80
DCA V0 Daughters		Daughter status		kTPCrefit	
		DCA πp Daughters		< 0.4 cm	
	$\pi ext{-specific cuts}$				
			p_{T}		> 0.16 GeV/c
	—		DCA to prim verte		> 0.3 cm
			TPC and TOF N σ Cuts		
			$p < 0.5 \; \mathrm{GeV}/c$		$N\sigma_{TPC} < 3$
		p > 0.5 GeV/c	if TOF & TPC available	$N\sigma_{TPC} < 3 \& N\sigma_{TOF} < 3$	
			<i>p > 0.0 Ce V / e</i>	else	$N\sigma_{TOF} < 3$
			p-specific cuts		
	p _T		$> 0.5(p) [0.3(\bar{p})] \text{ GeV}/c$		
	DCA to prim verte		> 0.1 cm		
IP Neg.		TPC and TOF N σ Cuts			
Daughter to		Daughter to	p < 0.8 GeV/c		$N\sigma_{TPC} < 3$
Primary Vtx	IP V0 to	Primary Vtx	p > 0.8 GeV/c	if TOF & TPC available	$N\sigma_{TPC} < 3 \& N\sigma_{TOF} < 3$
-	Primary Vtx			else	$N\sigma_{TOF} < 3$
40 I 0040	000	I T D			

K⁰_s Reconstruction

$K^0_{s} \rightarrow \pi^+\pi^-$ cτ = 2.7 cm (15 m for K⁰₁) • Branching ration ~ 70% • Purity(K⁰_s) ~ 98% **V0** Pointing Angle **ρ**_{π+π} π+ π-DCA V0 Daughters K^os IP Pos. IP Neg. Daughter to Daughter to **Primary Vtx** IP V0 to **Primary Vtx** Primary Vtx 13 June 2019

K_{s}^{0} reconstruction		
$\frac{ \eta }{ \eta }$	< 0.8	
p_{T}	> 0.2 GeV/c	
$m_{PDG} - 13.677 \text{ MeV} < m_{\text{inv}} < m_{\text{PDG}}$	+ 2.0323 MeV	
DCA to prim. vertex	< 0.3 cm	
Cosine of pointing angle	> 0.9993	
OnFlyStatus	false	
Decay Length	< 30 cm	
Shared Daughter Cut	true	
Misidentification Cut	true	
π^{\pm} Daughter Cuts		
$ \eta $	< 0.8	
Number of clusters in TPC	> 80	
Daughter Status	kTPCrefit	
DCA $\pi^+\pi^-$ Daughters	$< 0.3 { m cm}$	
p_{T}	> 0.15 GeV/c	
DCA to prim vertex	$> 0.3 { m cm}$	
TPC and TOF N σ Cuts		
p < 0.5 GeV/c	$N\sigma_{\rm TPC} < 3$	
p > 0.5 GeV/c if TOF & TPC av	ailable $N\sigma_{TPC} < 3 \& N\sigma_{TOF} < 3$	
p > 0.3 GeV/ c else	$N\sigma_{TOF} < 3$	

Misidentification Cuts: V0s

- > Remove K_{s}^{0} contamination from $\Lambda(\overline{\Lambda})$ sample
 - Reject candidate if all of the following are satisfied (essentially, reject if candidate would pass as K⁰):
 - $\Rightarrow |m_{inv,K_s^0 Hypothesis} m_{PDG,K_s^0}| < 9.0 \, MeV/c^2$
 - → Pos. and neg. daughters pass π cuts from K⁰_s reconstruction
 - $\Rightarrow |m_{inv,K_s^0 Hypothesis} m_{PDG,K_s^0}| < |m_{inv,\Lambda(\overline{\Lambda}) Hypothesis} m_{PDG,\Lambda(\overline{\Lambda})}|$
- > Remove $\Lambda(\overline{\Lambda})$ contamination from K⁰_s sample
 - Similar to Λ procedure above, reject if: • $|m_{inv,\Lambda(\overline{\Lambda}) Hypothesis} - m_{PDG,\Lambda(\overline{\Lambda})}| < 9.0 MeV/c^2$
 - → Pos. daughter passes p+(π +) cut from $\Lambda(\overline{\Lambda})$ reconstruction
 - → Neg. daughter passes π -(\overline{p} -) cut from $\Lambda(\overline{\Lambda})$ reconstruction
 - $\Rightarrow |m_{inv,\Lambda(\overline{\Lambda}) Hypothesis} m_{PDG,\Lambda(\overline{\Lambda})}| < |m_{inv,K_s^0 Hypothesis} m_{PDG,K_s^0}|$

Pair Cuts: ΛK

- Shared daughter cut for pairs
 - V0-V0 Pairs (i.e. ΛK⁰_s analyses)
 - Remove all pairs which share a daughter
 - Ex. Λ and K⁰_s particles which share a π⁻ daughter are excluded
 - V0-Track Pairs (i.e. ΛK[±] analyses)
 - Remove pairs if K[±] track is also used as V0 daughter
 - Only occurs if, for instance, K[±] is misidentified as π or p in the V0 reconstruction

- Average separation cuts
 - ΛK⁰_s
 - → Δr > 6.0 cm for like sign daughters
 - No requirement, unlike signs
 - ΛK[±]
 - → Δr > 8.0 cm for like sign daughter and track
 - No requirement, unlike signs

Ξ^{-} Reconstruction

THE OHIO STATE

UNIVERSITY

Ξ⁻ Reconstruction

Ξ reconstruction			
$ \eta $		< 0.8	
p_{T}		> 0.8 GeV/c	
$ m_{\rm inv} - m_{\rm PDG} $		$< 3.0 { m MeV}$	
DCA to prim. ver	tex	< 0.3 cm	
Cosine of pointing angle		> 0.9992	
	Λ daughter cuts		
DCA to prim. vertex		> 0.2 cm	
Cosine of pointing angle		> 0.0	
Cosine of pointing angle to Ξ decay vertex		> 0.9993	
OnFlyStatus		false	
All other Λ and corresponding (π and p) daughter cuts are			
same as in primary Λ selection			
	Bachelor π cuts		
$ \eta $		< 0.8	
p_{T}		$> 0.0 \ {\rm GeV}/c$	
DCA to prim. vertex		> 0.1 cm	
Number of clusters in the TPC		> 70	
Daughter status		kTPCrefit	
TPC and TOF N σ Cuts			
p < 0.5 GeV/c		$N\sigma_{TPC} < 3$	
$p > 0.5 \; \mathrm{GeV}/c$	if TOF & TPC available	$N\sigma_{\rm TPC} < 3 \& N\sigma_{\rm TOF} < 3$	
	else	$N\sigma_{\rm TOF} < 3$	

Pair Cuts: Ξ[−]K[±]

- Pair fails if
 - K^{\pm} is a (misidentified) daughter of the Ξ^{-}
 - Bachelor π is also a daughter of the Λ
- > Ξ shared daughter cut
 - Iterates through Ξ collection to ensure no daughter is used by more than one Ξ
- > Average separation cut for all daughters
 - $\overline{\Delta r}$ > 8.0 cm for daughters of Ξ^- and K[±] sharing the same charge
 - No requirement for unlike-charges

THE OHIO STATE

UNIVERSITY

- > THERM. 2 model includes flow effects in standard implementation (left)
- Introduce strong artificial anisotropic flow signals for more controlled study (right)
 - Sample emission angles from: $P(\phi) = \frac{1}{2} [1 + \cos(n\phi)]$
- Flow signal killed by randomizing emission

