Beauty production with ALICE at the LHC

Erin Gauger* for the ALICE Collaboration

*University of Texas at Austin

Strangeness in Quark Matter June 11, 2019

Physics Motivation: Heavy-flavor quarks

- Heavy mass → charm and beauty ("heavy-flavor quarks") produced early in collisions via hard parton-parton scattering
- Experience full evolution of Pb-Pb collisions, including...
 - The QGP Quark-Gluon Plasma, state of matter in which partons are deconfined
 - Interact with QGP constituents and loses energy

¹Liu and Liu, (2014) arXiv: 1212.6587 [nucl-th]

Collision systems

pp collisions

- Provide baseline for p-Pb and Pb-Pb collisions
- Test perturbative QCD calculations

p-Pb collisions

- Isolate initial state, cold nuclear matter effects
- Investigate the origin of observed collective effects in high-multiplicity events

Pb-Pb collisions

- Energy loss in the medium
 - Path-length dependence
 - Color charge effects: $\Delta E_{\text{gluons}} > \Delta E_{\text{quarks}}$ due to stronger coupling
 - Mass effects: collisional and radiative (dead cone effect) scattering has less effect on more massive objects

```
M_{\rm gluons} < M_{\rm u,d,s} < M_{\rm c} < M_{\rm b} \Delta E_{\rm gluons} > \Delta E_{\rm u,d,s} > \Delta E_{\rm c} > \Delta E_{\rm b}
```

Collectivity of particles in medium

Collision systems

pp collisions

- Provide baseline for p-Pb and Pb-Pb collisions
- Test perturbative QCD calculations

p-Pb collisions

- Isolate initial state, cold nuclear matter effects
- Investigate the origin of observed collective effects in high-multiplicity events

Pb-Pb collisions

- Energy loss in the medium
 - Path-length dependence
 - Color charge effects: $\Delta E_{\text{gluons}} > \Delta E_{\text{quarks}}$ due to stronger coupling
 - Mass effects: collisional and radiative (dead cone effect) scattering has less effect on more massive objects

$$M_{\rm gluons} < M_{\rm u,d,s} < M_{\rm c} < M_{\rm b}$$

 $\Delta E_{\rm gluons} > \Delta E_{\rm u,d,s} > \Delta E_{\rm c} > \Delta E_{\rm b}$

Collectivity of particles in medium

Compare beauty with charm to understand the mass dependence of energy loss and collective behavior!

Recent beauty measurements in ALICE

In ALICE, beauty measured with the following:

- Beauty-decay electrons
- Non-prompt D⁰
- b-tagged jets
- → Possible with excellent PID, vertex reconstruction, and impact parameter resolution of the ALICE detector

ITS (Inner tracking system):

tracking & vertexing

TPC (time projection chamber):

tracking & PID

EMCal (electromagnetic calorimeter)

+ TOF (time-of-flight): PID

- Methods -

Measuring beauty-decay electrons

- Large branching ratios:
 - b \rightarrow e + X (~10%), b (\rightarrow c) \rightarrow e + X (~10%)
- Beauty hadrons have a longer lifetime than other electron sources
 - \rightarrow Larger distance of closest approach (d_0) to the primary vertex

beauty hadrons $\tau \sim 500 \ \mu \text{m/}c$ charm hadrons $\tau \sim 60\text{-}300 \ \mu \text{m/}c$

d₀ templates made with Monte
 Carlo simulations and fitted to d₀
 in data to separate different
 sources of electrons

Measuring non-prompt D⁰

- Reconstruct b→D⁰(→K⁻π⁺) using invariant mass of secondary vertices (SV)
 displaced from primary vertex
- Use boosted decision trees (BDT) to combine and optimize topological cuts on SV to enhance non-prompt D⁰ vs. prompt and reduce combinatorial background
 - Decay length is one of the cuts, again exploiting long B meson lifetime

Fit = gaussian (signal) + exponential (combinatorial background)

Measuring non-prompt Do

- Correct the raw yield with the fraction of non-prompt/prompt D⁰ (f_{np})
- Calculate using a template fit of the raw yield vs. BDT cut value

fraction of non-prompt in raw sample

$$\left(\frac{\mathrm{d}^2 \sigma}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y}\right)_{\mathrm{np}} = \frac{f_{\mathrm{np}} N_{\mathrm{raw}} / 2}{\Delta p_{\mathrm{T}} \Delta y B R^{\mathrm{D}^0 \to \mathrm{K}\pi} L (Acc \times \varepsilon)_{\mathrm{np}}}$$

$$N_{
m raw}(x) pprox N_{
m c} \cdot arepsilon_{
m c}(x) + N_{
m b} \cdot arepsilon_{
m b}(x)$$

$$arepsilon_{
m c,b} = {
m efficiency \ for \ c,b}
ightarrow {
m D}^{
m 0}$$

$$f_{\rm np}(x) = \frac{N_{\rm b}\varepsilon_{\rm b}(x)}{N_{\rm c}\varepsilon_{\rm c}(x) + N_{\rm b}\varepsilon_{\rm b}(x)}$$

b-Tagged Jets

- Select jets with a 3-pronged secondary vertex
- Apply topological cuts on secondary vertex (SV) to increase b-jets in raw yield:

$$SL_{\rm xy} = L_{\rm xy}/\sigma_{\rm Lxy}$$

Displacement significance

- = distance between primary and SV in xy-plane / resolution
- \rightarrow b-jets tend to have longer L_{xy} due to long B meson lifetime

Correct raw yield with efficiency & purity of b-jets in sample:

$$N_{\mathrm{b}\,\mathrm{jet}}^{\mathrm{corr}}(p_{\mathrm{T},\mathrm{jet}}^{\mathrm{ch,reco}}) = N_{\mathrm{b}\,\mathrm{jet}}^{\mathrm{raw}}(p_{\mathrm{T},\mathrm{jet}}^{\mathrm{ch,reco}}) \times \frac{P_{\mathrm{b}}}{\varepsilon_{\mathrm{b}}}$$

$$P_{\rm b} = \frac{N_{\rm b}\varepsilon_{\rm b}}{N_{\rm b}\varepsilon_{\rm b} + N_{\rm c}\varepsilon_{\rm c} + N_{\rm LF}\varepsilon_{\rm LF}}$$

- N_c, N_b from POWHEG, multiplied by response matrix
- N_{LF} = raw inclusive from data minus N_c and N_b
- $\epsilon_{c,b,LF}$ = tagging efficiency from MC

ALI-PREL-323641

- Results in pp Collisions -

Results in pp collisions: Beauty-decay electrons

- b→e and c→e yields in 7 TeV pp collisions
- Both are in agreement with pQCD theory (FONLL*), though on the upper edge of the systematic error
- Bottom window: b→e/c→e increases with p_T, the b→e contribution surpassing c→e for p_T > 4 GeV/c
- Good baseline to compare with p-Pb and Pb-Pb results

Phys. Lett. B 721 (2013) 13-23

*JHEP 9805 (1998) 007 JHEP 0103 (2001) 006

Results in pp collisions: Non-prompt Do

- Fully-corrected cross section down to $p_T = 1 \text{ GeV/}c$
- Results agree with FONLL, but lie on the upper edge of the FONLL uncertainty across all $p_{\rm T}$
- Good precision, especially at low p_T

Poster by Mengke Cai

"Non-prompt D⁰-meson production in pp collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE"

ALI-PREL-319648

- Results in p-Pb Collisions -

Results in p-Pb: b→e R_{pPb}

cross section in p-Pb

$$R_{\rm pPb} = \frac{{\rm d}\sigma_{\rm pPb}/{\rm d}p_{\rm T}}{A_{\rm Pb}\,{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$
 # nucleons in Pb cross section in pp nucleus (208)

- Compare with the yield in pp collisions using the nuclear modification factor (R_{pPb})
- Within error bars, R_{pPb} is consistent with unity → suggests cold nuclear matter effects are small
- Consistent with models that include cold nuclear matter effects

JHEP 07 (2017) 052

Results in p-Pb: b-Tagged Jets

- Fully-corrected cross section
- Results agree with different POWHEG simulations within uncertainties (POWHEG Dijet EPPS16 and POWHEG HVQ EPS09NLO)
- First measurement of b-tagged jets in ALICE!

Talk by Auro Mohanty 13 June, 16:50

"Heavy-flavor jet production and charm fragmentation with ALICE at LHC"

- Results in Pb-Pb Collisions -

Results in Pb-Pb: b→e RAA

- Compare Pb-Pb to pp production with RAA
- → Reduced particle yield in Pb-Pb vs. pp, due to energy loss in the QGP
- Compare b→e with combined c,b→e
 - \rightarrow Hint that $R_{AA}(b\rightarrow e) > R_{AA}(c,b\rightarrow e)$ at low p_T
- High p_T, results fully overlap, recall that b→e/c→e increases with p_T from the pp results

 Measurement is consistent with models that include both collisional and radiative energy loss

Results in Pb-Pb: b→e v₂

$$v_2 = rac{1}{R_2} rac{\pi}{4} rac{N_{in-plane} - N_{out-of-plane}}{N_{in-plane} + N_{out-of-plane}}$$

Poster by Martin Völkl

"Azimuthal anisotropy studies of beauty-decay electrons in Pb-Pb collisions with ALICE"

- Non-zero v₂ measured for b→e
 - In $1.3 < p_T < 4$ GeV/c, v_2 significance above 0 is 3.49σ
- Hint that b quarks participate in collective behavior of the medium
- Compatible with b,c→e

Summary

pp Collisions

- Non-prompt D⁰ and b→e
 - Provides baseline for comparison with Pb-Pb
 - On upper edge of uncertainty of FONLL
 - Non-prompt D⁰ measured for the first time in ALICE

p-Pb Collisions

- b→e R_{pPb}
 - Suggests cold nuclear matter effects are small
- b-jets
 - First measurement in ALICE
 - Agrees with POWHEG simulations

Pb-Pb Collisions

- b→e R_{AA}
 - Hint of less suppression at low p_T of $b \rightarrow e$ vs. c, $b \rightarrow e$
 - Agreement with models that include collisional and radiative energy loss
- b \rightarrow e v_2
 - First measurement in ALICE
 - Hint that b quark participates in collective behavior of the system
 - Consistent with b,c→e v₂

Related talks & posters

For heavy flavor in small systems with ALICE:

TODAY, Collectivity in Small Systems session

Talk by Preeti Dhankher

TODAY, 17:30

"Study of open heavy-flavor hadron production in pp and p-Pb collisions with ALICE"

For non-prompt J/ ψ measurements in ALICE:

Talk by Minjung Kim

13 June, 14:40

"J/ψ production measurements in pp, p-Pb and Pb-Pb collisions at mid-rapidity using the ALICE detector at LHC"

Poster by Giuseppe Trombetta

"Measurement of prompt and non-prompt J/ ψ production at mid-rapidity in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE"

- Back-up -

Non-prompt Do in pp @ 5.02 TeV

- Two BDT used:
 - 1. Separate prompt and non-prompt (BDT1)
 - 2. Separate non-prompt and combinatorial background (BDT2)
- Trained using MC simulation for prompt and non-prompt D⁰, data D⁰ invariant mass side band for combinatorial background

variables
$ d_0 - d_0^{exp} ^{prong}(n\sigma)$
Dec.Length XY
Norm L_{XY}
$d_0 * d_0$
DCA
$Cos(\theta_{point})$
$Cos(\theta_{point})XY$
$d_{0,k}$
$d_{0,\pi}$
$Cos(\theta^*)$

Results in pp collisions: Non-prompt D^o

Comparison with CMS measurement

Erin Gauger June 11, 2019 24

b→e R_{AA} and v₂ in Pb-Pb @ 5.02 TeV: Analysis Methods

- Log-likelihood fit method was used
 - Four templates: c→e, b→e, Dalitz-decay, and conversion electrons
- For v₂, repeat process for in- and out-of-plane

$$v_2 = \frac{1}{R_2} \frac{\pi}{4} \frac{N_{in-plane} - N_{out-of-plane}}{N_{in-plane} + N_{out-of-plane}}$$

0.05

 $d_0 \times \text{sgn}(\text{charge} \times \text{field}) \text{ (cm)}$

ALI-PREL-319405