Shedding light on the hypertriton lifetime with ALICE at the LHC
Hypernuclei in heavy-ion collisions

- Thermal Model
- Coalescence Model
Hypernuclei in heavy-ion collisions

Thermal Model

- Thermodynamic approach to particle production in heavy-ion collisions
- Abundances fixed at chemical freeze-out \((T_{\text{chem}}) \)
- Hypernuclei are very sensitive to \(T_{\text{chem}} \) because of their large mass \((M) \)
- Exponential dependence of the yield \(e^{-M/T_{\text{chem}}} \)
- Depends only on \(T, V \) and \(\mu_B \), which is basically zero at the LHC

Coalescence Model
Thermal Model

- Thermodynamic approach to particle production in heavy-ion collisions
- Abundances fixed at chemical freeze-out (T_{chem})
- hypernuclei are very sensitive to T_{chem} because of their large mass (M)
 \rightarrow Exponential dependence of the yield $e^{-M/T_{\text{chem}}}$
- depends only on T, V and μ_B, which is basically zero at the LHC

Coalescence Model

Hypernuclei in heavy-ion collisions

Thermal Model

- Thermodynamic approach to particle production in heavy-ion collisions
- Abundances fixed at chemical freeze-out (T_{chem})
- Hypernuclei are very sensitive to T_{chem} because of their large mass (M)
 — Exponential dependence of the yield $e^{-M/T_{\text{chem}}}$
- Depends only on T, V and μ_B, which is basically zero at the LHC

Coalescence Model

- If baryons at freeze-out are close enough in Phase Space an (anti-)hypernucleus can be formed
- Hypernuclei are formed by protons (Λ) and neutrons which have similar velocities after the freeze-out

SQM 2019, Bari
Hypernuclei in heavy-ion collisions

Thermal Model

- Thermodynamic approach to particle production in heavy-ion collisions
- Abundances fixed at chemical freeze-out (T_{chem})
- Hypernuclei are very sensitive to T_{chem} because of their large mass (M)

 \rightarrow Exponential dependence of the yield $e^{-M/T_{\text{chem}}}$
- Depends only on T, V and μ_B, which is basically zero at the LHC

Coalescence Model

- If baryons at freeze-out are close enough in Phase Space an (anti-)hypernucleus can be formed
- Hypernuclei are formed by protons (Λ) and neutrons which have similar velocities after the freeze-out

Stefania Bufalino

SQM 2019, Bari
• Hadrons emitted from the interaction region in statistical equilibrium once the chemical freeze-out temperature is reached
• Estimation for central heavy-ion collisions at LHC energies
Hypertriton: lightest known hypernucleus bound state of p, n and Λ

- Mass\(^{(2)}\) = 2.992 GeV/c\(^2\)
- Λ-Lifetime\(^{(3)}\) \(~\)263 ps

Decay Channel:
1. Mesonic
2. Non Mesonic

Mesonic decay

<table>
<thead>
<tr>
<th>Charged</th>
<th>Neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^3\Lambda H \rightarrow ^3\text{He}+\pi^-)</td>
<td>(^3\Lambda H \rightarrow ^3\text{H}+\pi^0)</td>
</tr>
<tr>
<td>(^3\Lambda H \rightarrow d+p+\pi^-)</td>
<td>(^3\Lambda H \rightarrow d+n+\pi^0)</td>
</tr>
<tr>
<td>(^3\Lambda H \rightarrow n+p+p+\pi^-)</td>
<td>(^3\Lambda H \rightarrow n+n+p+\pi^0)</td>
</tr>
</tbody>
</table>

- Study of the production in the charged decay channel
 - 2 body (B.R.\(^{(1)}\) \(\approx\) 25%)
 - 3 body (B.R.\(^{(1)}\) \(\approx\) 41%)

\(^{(3)}\) M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

Hypertriton measurement: methodology

Hypertriton: lightest known hypernucleus bound state of \(p, n \) and \(\Lambda \)

- Mass\(^{(2)}\) = 2.992 GeV/c\(^2\)
- \(\Lambda \)-Lifetime\(^{(3)}\) \(\sim 263 \) ps

Decay Channel:
1. Mesonic
2. Non Mesonic

Mesonic decay

<table>
<thead>
<tr>
<th>Charged</th>
<th>Neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^3\Lambda H \rightarrow ^3\text{He}^+\pi^-)</td>
<td>(^3\Lambda H \rightarrow ^3\text{H}^+\pi^0)</td>
</tr>
<tr>
<td>(^3\Lambda H \rightarrow d+p+\pi^-)</td>
<td>(^3\Lambda H \rightarrow d+n+\pi^0)</td>
</tr>
<tr>
<td>(^3\Lambda H \rightarrow n+p+p+\pi^-)</td>
<td>(^3\Lambda H \rightarrow n+n+p+\pi^0)</td>
</tr>
</tbody>
</table>

Signal extraction:

- Identify daughters (\(^3\text{He}, \pi \)) or (\(d, p, \pi \))
- Apply topological cuts in order to:
 - Identify secondary decay vertex
 - Reduce combinatorial background
- Evaluate invariant mass

Study of the production in the charged decay channel

- 2 body (B.R.\(^{(1)}\) \(\approx 25\% \))
- 3 body (B.R.\(^{(1)}\) \(\approx 41\% \))

Hypertiriton measurement with ALICE

Hypertiriton: lightest known hypernucleus bound state of p, n and Λ

- Mass$^{(2)} = 2.992$ GeV/c2
- Λ-Lifetime$^{(3)} \sim 263$ ps

Decay Channel:

1. Mesonic
2. Non Mesonic

Signal extraction:

- Identify daughters (3He,π) or (d,p,π)
- Apply topological cuts in order to:
 - Identify secondary decay vertex
 - Reduce combinatorial background
- Evaluate invariant mass

Mesonic decay

<table>
<thead>
<tr>
<th>Charged</th>
<th>B.R.$^{(4)}$</th>
<th>System + Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^3\Lambda H \rightarrow ^3$He+$\pi^-$</td>
<td>25%</td>
<td>Pb-Pb at 2.76 TeV, 5.02 TeV</td>
</tr>
<tr>
<td>$^3\Lambda H \rightarrow d+p+\pi^-$</td>
<td>41%</td>
<td>Pb-Pb at 2.76 TeV</td>
</tr>
</tbody>
</table>

Hypertriton measurement with ALICE

Hypertriton: lightest known hypernucleus bound state of p, n and $Λ$

- Mass$^{(2)} = 2.992$ GeV/c2
- $Λ$-Lifetime$^{(3)} \sim 263$ ps

Decay Channel:
1. Mesonic
2. Non Mesonic

Signal extraction:
- Identify daughters (3He,π) or (d,p,π)
- Apply topological cuts in order to:
 - Identify secondary decay vertex
 - Reduce combinatorial background
- Evaluate invariant mass

Mesonic decay

<table>
<thead>
<tr>
<th>Charged</th>
<th>B.R.$^{(4)}$</th>
<th>System + Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^3ΛH \rightarrow ^3$He+π^-</td>
<td>25%</td>
<td>Pb-Pb at 2.76 TeV, 5.02 TeV</td>
</tr>
<tr>
<td>$^3ΛH \rightarrow d+p+\pi^-$</td>
<td>41%</td>
<td>Pb-Pb at 2.76 TeV</td>
</tr>
</tbody>
</table>

Hypertriton: lightest known hypernucleus bound state of p, n and Λ

Mass$^{(2)} = 2.992$ GeV/c2

Λ-Lifetime$^{(3)} \sim 263$ ps

Decay Channel:
1. Mesonic
2. Non Mesonic

Signal extraction:
- Identify daughters (3He, π) or (d,p,π)
- Apply topological cuts in order to:
 - Identify secondary decay vertex
 - Reduce combinatorial background
- Evaluate invariant mass

Mesonic decay

<table>
<thead>
<tr>
<th>Charged</th>
<th>B.R.$^{(4)}$</th>
<th>System + Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^3\Lambda H \rightarrow ^3$He+$\pi^-$</td>
<td>25%</td>
<td>Pb-Pb at 2.76 TeV, 5.02 TeV</td>
</tr>
<tr>
<td>$^3\Lambda H \rightarrow$ d+p+π^-</td>
<td>41%</td>
<td>Pb-Pb at 2.76 TeV</td>
</tr>
</tbody>
</table>

References:

Hypertriton: lightest known hypernucleus bound state of p, n and Λ

Mass$^{(2)} = 2.992$ GeV/c^2

Λ-Lifetime$^{(3)} \sim 263$ ps

Decay Channel:
1. Mesonic
2. Non Mesonic

Signal extraction:
- Identify daughters ($^3\text{He}, \pi$) or (d,p, π)
- Apply topological cuts in order to:
 - Identify secondary decay vertex
 - Reduce combinatorial background
- Evaluate invariant mass

Mesonic decay

<table>
<thead>
<tr>
<th>System + Energy</th>
<th>Charged</th>
<th>B.R.$^{(4)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb–Pb at 2.76 TeV</td>
<td>$^3\Lambda\text{H} \rightarrow ^3\text{He}+\pi^-$</td>
<td>25%</td>
</tr>
<tr>
<td>Pb–Pb at 5.02 TeV</td>
<td>$^3\Lambda\text{H} \rightarrow d+p+\pi^-$</td>
<td>41%</td>
</tr>
</tbody>
</table>

$\sqrt{s_{\text{NN}}} = 5.02$ TeV

Pb–Pb, 0–80%

$|y| < 0.9$
Hypertriton: lightest known hypernucleus bound state of p, n and Λ

Mass$^{(2)}$ = 2.992 GeV/c2

Λ-Lifetime$^{(3)}$ ~263 ps

Decay Channel:
1. Mesonic
2. Non Mesonic

Signal extraction:
- Identify daughters (3He, π) or (d,p,π)
- Apply topological cuts in order to:
 - Identify secondary decay vertex
 - Reduce combinatorial background
- Evaluate invariant mass

Mesonic decay

<table>
<thead>
<tr>
<th>Charged</th>
<th>B.R.$^{(4)}$</th>
<th>System + Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^3\Lambda H \rightarrow ^3\text{He} + \pi^-$</td>
<td>25%</td>
<td>Pb-Pb at 2.76 TeV, 5.02 TeV</td>
</tr>
<tr>
<td>$^3\Lambda H \rightarrow d + p + \pi^-$</td>
<td>41%</td>
<td>Pb-Pb at 2.76 TeV</td>
</tr>
</tbody>
</table>

ALICE Performance

$Pb-Pb \sqrt{s_{NN}} = 2.76$ TeV (2011)
0-10%, $|y| < 0.5$

$^3\Lambda \rightarrow d + p + \pi^+$

Hypertriton production

Measurement performed in semi-central collisions (10-40%) for the first time at 5.02 TeV. The measurement at 2.76 TeV was performed in 3 p_T bins and 2 centrality classes (0-10% and 10-50%). Blast-Wave4 distribution used to extrapolate the yield in the unmeasured p_T region.

Hypertriton production vs models

\[\text{dN/dy} \times \text{B.R.} \text{ vs B.R.} \]

- Hyper-triton decay B.R. is not precisely known, only constrained by the ratio between all charged channels containing a pion.
- The study of the 3-body decay channel can help in improving our knowledge of B.R.

✓ **Hybrid UrQMD**: combines the hadronic transport approach with an initial hydrodynamical stage for the hot and dense medium

✓ **GSI-Heidelberg**: equilibrium statistical thermal model with \[T_{\text{chem}} = 156 \text{ MeV} \]

A. Andronic et al. *Phys. Lett. B* 697,

- **SHARE**: non-equilibrium thermal model with

M. Pétran et al. *Phys. Rev. C* 88 (3)

agreement with **equilibrium thermal model GSI-Heidelberg** and with **Hybrid UrQMD** in the B.R. range between 0.24 and 0.35
Hypernuclei lifetime: exp vs theory

Small $E_{B\Lambda}$ (~130 keV) \rightarrow lifetime is slightly below the free Λ lifetime (263.2 ± 2 ps [5])

Hypothesis: Λ would spend most of its time far from the deuteron core due to the very small value of $E_{B\Lambda}$

- one-pion exchange (OPE) model approach with the addition of 2π/σ and 2π/ρ exchange terms to the OPE exchange potential

- plus correction from
- Better description of NN interaction and 2 Nucleon Non Mesonic Weak Decay taken into account

- one-pion exchange (OPE) model approach with the addition of many exchange terms to the OPE exchange potential

Stefania Bufalino

heavy = weighted average of lifetime for hypernuclei with 180<A<238
Hypertriton lifetime: experimental results

- Emulsion technique: 203^{+40}_{-31} ps
- He Bubble Chamber: 195^{+15}_{-13} ps
- Digital readout: 185^{+28}_{-23} ps without [21]
- Digital readout: 163^{+18}_{-16} ps with [21]

World averages and uncertainties grouping the measurements on the basis of the experimental technique

ALICE: ref [23]
STAR: ref [20,21]
For all the references in the plot: see slide17
Hypertriton: the *lifetime* puzzle

Data compilation after LHC Run 1

Re-evaluation of world average including ALICE result:

\[
t = (215^{+18}_{-16}) \, \text{ps}
\]

ALICE value compatible with the computed average
Hypertriton lifetime with Pb-Pb at 5 TeV

\[\tau = 237^{+33}_{-36} \text{(stat.)} \pm 17 \text{(syst.) ps) } \]

\(\tau \) spectra (default)

- Exponential fit to the differential yield in different \(\tau t \) bins
Hypertriton lifetime with Pb-Pb at 5 TeV

\(\tau = 237^{+33}_{-36} \text{(stat.)} \pm 17 \text{(syst.)} \) ps

\(\frac{dN}{d(\text{c}t)} \) (cm\(^{-1}\))

\(c t = 7.10^{+1.00}_{-1.07} \) (stat.) \(\pm 0.50 \) (syst.) (cm)

\(\tau = 237^{+33}_{-36} \) (stat.) \(\pm 17 \) (syst.) (ps)

\(\frac{\text{Events}}{1.25 \text{ MeV/} \text{c}^2} = 8.42 \sigma \) Significance (3\(\sigma \)) = 8.42

ct spectra (default)

- Exponential fit to the differential yield in different ct bins
Hypertriton lifetime with Pb-Pb at 5 TeV

\[\tau = 237^{+33}_{-36} \text{(stat.)} \pm 17 \text{(syst.)} \text{ps} \]

ct spectra (default)

- Exponential fit to the differential yield in different ct bins

Unbinned fit

- Crosscheck method

- Fit to the invariant mass distribution \(\rightarrow \sigma \)
 used to define the signal range \([+3\sigma,-3\sigma]\)
Hypertriton lifetime with Pb-Pb at 5 TeV

\[\tau = 237^{+33}_{-36} \text{(stat.)} \pm 17 \text{(syst.) ps} \]

ct spectra (default)

- Exponential fit to the differential yield in different ct bins

Unbinned fit

- Crosscheck method
- Fit to the invariant mass distribution \(\rightarrow \sigma \)
 used to define the signal range \([+3\sigma, -3\sigma]\)
Hypertriton lifetime with Pb-Pb at 5 TeV

ct spectra (default)

- Exponential fit to the differential yield in different ct bins

\[
\tau = 237^{+33}_{-36} \text{(stat.)} \pm 17 \text{(syst.) ps}
\]

Unbinned fit

- Fit to the ct distribution in the signal range with function:
 - *signal*: single exponential
 - *background*: double exponential

\[
\tau = 223^{+41}_{-33} \text{(stat.)} \pm 20 \text{(syst.) ps}
\]
Hypertriton lifetime with Pb-Pb at 5 TeV

- Exponential fit to the differential yield in different ct bins
 \[\tau = 237^{+33}_{-36} \text{(stat.)} \pm 17 \text{(syst.) ps) } \]

- Fit to the ct distribution in the signal range with function:
 - signal: single exponential
 - background: double exponential
 \[\tau = 223^{+41}_{-33} \text{(stat.)} \pm 20 \text{(syst.) ps) } \]

ct spectra (default)

- Exponential fit to the differential yield in different ct bins

- Fit to the ct distribution in the signal range with function:
 - signal: single exponential
 - background: double exponential

\[\tau = 223^{+41}_{-33} \text{(stat.)} \pm 20 \text{(syst.) ps) } \]
Previous heavy-ion experiment results show a trend below the free Λ lifetime. Result from Pb-Pb at 5.02 TeV: improved precision and value compatible with that of free Λ.

New result at 5.02 TeV not included in the world average.
• Production and lifetime measurements of the (anti-)hypertriton performed in more centrality classes w.r.t. the results at 2.76 TeV and with improved precision thanks to Run 2 data

• Integrated yields are well described by thermal models

• Recent ALICE hypertriton lifetime measurement shows an improved precision and a value closer to the Λ lifetime with respect to the previous heavy-ion results

 • Lifetime determination via 3-body decay channel will be important
 • New analysis approaches based on Machine Learning are ongoing (poster by P. Fecchio)
 • New theoretical calculations for the lifetime are needed as well as more precise measurements of the B_Λ
Measurements with higher significance of anti-hypernuclei will be possible in central Pb–Pb collisions in Runs 3 and 4 also for $A > 3$.
BACKUP
Hyper-triton lifetime: experimental results

Upgrade strategy

- Measurement of (anti-)hyper-triton yields and lifetime is an interesting topic and nice inputs come from the heavy-ion experiment.
- New measurement from HI experiments gives a shorter lifetime than the expected free Lambda lifetime recently confirmed by ALICE at a new energy (5.02 TeV).
- What about Run 3 & Run 4 of LHC? More statistics delivered (50 kHz Pb-Pb collision rate).

<table>
<thead>
<tr>
<th>State</th>
<th>dN/dy</th>
<th>B.R.</th>
<th>〈Acc × ε〉</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^3\Lambda H)</td>
<td>(1 \times 10^{-4})</td>
<td>25%</td>
<td>11%</td>
<td>44000</td>
</tr>
<tr>
<td>(^4\Lambda H)</td>
<td>(2 \times 10^{-7})</td>
<td>50%</td>
<td>7%</td>
<td>110</td>
</tr>
<tr>
<td>(^4\Lambda He)</td>
<td>(2 \times 10^{-7})</td>
<td>32%</td>
<td>8%</td>
<td>130</td>
</tr>
</tbody>
</table>

Introduction: ALICE

- General purpose heavy ion experiment
- Excellent particle identification (PID) capabilities and low material budget
- Most suited detector at the LHC to study the (anti-)(hyper-)nuclei produced in the collisions
Particle identification in ALICE

Detectors used for (anti-)(hyper-)nuclei analysis:

- **ITS**
 - Separation of primary and secondary nuclei from knock-out
 - $p_T > 0.5 \text{ GeV/c} \rightarrow \sigma_{\text{DCA}_{xy}} < 100 \mu\text{m}$

- **TPC**
 - dE/dx in gas (Ar-CO$_2$)
 - $\sigma_{dE/dx} \sim 5.5\%$

- **TOF**
 - Time-of-flight measurement
 - $\sigma_{\text{TOF}} \sim 80 \text{ ps (Pb-Pb), 120 ps (pp)}$

- **V0**
 - Two arrays of 64 scintillators
 - Determination of the centrality of a collision