Spin alignment measurements of vector mesons with ALICE detector at the LHC

Sourav Kundu (For the ALICE collaboration)
National Institute of Science Education and Research, HBNI, Jatni, INDIA

Outline:

- Physics Motivation
- Experimental observable
- ALICE detector setup
- Results
- Summary

The $18^{\text {th }}$ International Conference on Strangeness in Quark Matter (SQM 2019)
10-15 June 2019, Bari (Italy)

Motivation

F. Becattini, F. Piccinini and J. Rizzo

Phys.Rev.C 77, 024906 (2008)
\checkmark Large initial angular momentum is created in non-central heavy-ion collisions
\checkmark Vector mesons (spin=1) can be polarized due to spin-orbit interaction
\checkmark Spin alignment/polarization is a sensitive probe to vortical structure of QGP, and particle production mechanisms

Angular distribution of vector mesons

$$
\frac{\mathrm{d} N}{\mathrm{~d} \cos \theta^{*}}=N_{0}\left[1-\rho_{00}+\cos ^{2} \theta^{*}\left(3 \rho_{00}-1\right)\right]
$$

K. Schilling, P. Seyboth and G. Wolf, Nucl. Phys. B 15, 397 (1970)
$\rho_{00}=$ Element of spin density matrix $=1 / 3$--> No spin alignment

Quantization axis
$\Rightarrow \quad$ Normal to production plane Normal to reaction plane

$\mathrm{K}^{* 0}$ Vector meson

- Mass: $896 \mathrm{MeV} / \mathrm{c}^{2}$
- Spin: 1
- Decays to K^{+}and π (B.R. ~ 66.6\%)
- Quark content (d,s)

Data set

pp collisions

Heavy-ion collisions

Collision system and energy	pp at 13 TeV, Minimum bias
Rapidity	$\|y\|<0.5$
No. of events	$\sim 43 \mathrm{M}$
Hadrons	$\mathrm{K}^{* 0}$ and ϕ
Background	Mixed events
Efficiency x acceptance	Corrected
Quantization axis	Normal to Production plane

Collision system and energy	$\mathrm{Pb}-\mathrm{Pb}$ at $2.76 \mathrm{TeV}\left(\mathrm{K}^{* 0}\right.$ and $\left.\phi\right)$ and $5.02 \mathrm{TeV}\left(\mathrm{K}^{* 0}\right)$
Rapidity	$\|y\|<0.5$
No. of events	$\begin{aligned} & \sim 14 \mathrm{M}(2.76 \mathrm{TeV}), ~ \sim 30 \mathrm{M}(5.02 \\ & \mathrm{TeV}) \end{aligned}$
Hadrons	$\mathrm{K}^{* 0}$ and ϕ
Background	Mixed events
Efficiency x acceptance	Corrected
Quantization axis	Normal to Production plane and Event plane

pp is used as a control experiment and that any effect would be most visible in $\mathrm{Pb}-\mathrm{Pb}$
Goal: Measure $\mathrm{d} N / \mathrm{d}^{2} \cos \theta^{*}$ vs. $\cos \theta^{*}$ and extract ρ_{00} value as a function of p_{T} and centrality

ALICE detector

TPC : $|\eta|<0.9$ Tracking and particle identification

V0 : $-3.7<\eta<-1.7$ and $2.8<\eta<5.1$ Trigger, event centrality and event plane estimation

Time of Flight : $|\eta|<0.9$ Particle identification

Invariant mass reconstruction of $\mathrm{K}^{* 0}$ vector meson

Same event (signal+bkground) and mixed event (bkground) distributions

Same event distribution after mixed event background subtraction

Yield is the area under Breit-Wigner distribution

Invariant mass reconstruction of ϕ vector meson

Same event (signal+bkground) and mixed event (bkground) distributions

Same event distribution after mixed event background subtraction

Yield is the area under Voigitian distribution

Angular distribution: $\mathrm{K}^{* 0}$

Two parameters (N_{0} and ρ_{00}) fit to $\cos \theta^{*}$ distributions measured in different p_{T} bins
$\frac{d N}{d\left(\cos \theta^{*}\right)}=N_{0} \times\left[\left(1-\rho_{00}\right)+(1 / R)\left(3 \rho_{00}-1\right) \cos ^{2} \theta^{*}\right]$
$R=1$ for Production plane measurement
R is the second order event plane resolution for event plane measurement

Angular distribution: ϕ

Two parameters (N_{0} and ρ_{00}) fit to $\cos \theta^{*}$ distributions measured in different p_{T} bins
$\frac{d N}{d\left(\cos \theta^{*}\right)}=N_{0} \times\left[\left(1-\rho_{00}\right)+(1 / R)\left(3 \rho_{00}-1\right) \cos ^{2} \theta^{*}\right]$
$R=1$ for Production plane measurement
R is the second order event plane resolution for event plane measurement

$\checkmark \rho_{00}=1 / 3$ in pp collisions at all measured p_{T} region for both $\mathrm{K}^{* 0}$ and ϕ vector meson
\checkmark No spin alignment observed for vector mesons in pp collisions

ρ_{00} vs. $p_{\mathrm{T}}:$ Pb-Pb collisions (ϕ)

$\checkmark \rho_{00}=1 / 3$ at $p_{\mathrm{T}}>0.8 \mathrm{GeV} / \mathrm{c}$
$\checkmark \rho_{00}<1 / 3$ in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $p_{\mathrm{T}}<0.8 \mathrm{GeV} / \mathrm{c}$ for ϕ meson

Production plane: 1.3o deviation from $1 / 3$ for lowest p_{T} bin

Event plane: 1.4σ deviation from $1 / 3$ for lowest p_{T} bin

- Measurements from production and event plane are consistent with each other within errors

$\checkmark \rho_{00}=1 / 3$ at $p_{\mathrm{T}}>2.0 \mathrm{GeV} / \mathrm{c}$
$\checkmark \rho_{00}<1 / 3$ in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $p_{\mathrm{T}}<2.0 \mathrm{GeV} / \mathrm{c}$ for K^{*}

Production plane: 2.5σ deviation from $1 / 3$ for lowest p_{T} bin

Event plane: 1.8σ deviation from $1 / 3$ for lowest p_{T} bin
\checkmark Measurements from production and event plane are consistent with each other within errors
\checkmark Measurements from 2.76 and 5.02 TeV are consistent with each other

$\checkmark \rho_{00}<1 / 3$ at low p_{T} and consistent with $1 / 3$ at high p_{T} for both $\mathrm{K}^{* 0}$ and ϕ
\checkmark For lowest p_{T} bin, ρ_{00} values are about $2.5 \sigma(1.8 \sigma)$ away from $1 / 3$ w.r.t. production plane (event plane) for $\mathrm{K}^{* 0}$ and $1.3 \sigma(1.4 \sigma)$ away from $1 / 3$ w.r.t. production plane (event plane) for ϕ respectively

Centrality dependence of ρ_{00}

$\checkmark \rho_{00}$ shows centrality dependence and maximum deviation from $1 / 3$ at mid-central collisions for both $\mathrm{K}^{* 0}$ and ϕ
\checkmark Within statistical and systematic uncertainties ρ_{00} values are similar in both Production and Event plane method
$\checkmark \rho_{00} \sim 1 / 3$: Spin alignment not observed in proton-proton collisions at 13 TeV
$\checkmark \rho_{00}$ consistent with $1 / 3$ at high p_{T} in $\mathrm{Pb}-\mathrm{Pb}$ collisions for both $\mathrm{K}^{* 0}$ and ϕ vector mesons
$\checkmark \rho_{00}<1 / 3$ w.r.t. both Event and Production plane in $\mathrm{Pb}-\mathrm{Pb}$ collisions at low p_{T} for both $\mathrm{K}^{* 0}$ and ϕ vector mesons in mid-central collisions
$\checkmark \rho_{00}$ shows centrality dependence and maximum deviation for mid-central collisions in both Event and Production plane
\checkmark In mid-central collisions, for lowest p_{\top} bin, ρ_{00} values are about $2.7 \sigma(1.7 \sigma)$ away from $1 / 3$ w.r.t. production plane (event plane) for $\mathrm{K}^{* 0}$ and $1.8 \sigma(1.4 \sigma)$ away from $1 / 3$ w.r.t. production plane (event plane) for ϕ respectively
$\checkmark \rho_{00}$ values are similar at both $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=2.76$ and 5.02 TeV

