Spin alignment measurements of vector mesons with ALICE detector at the LHC

Sourav Kundu (For the ALICE collaboration)

National Institute of Science Education and Research, HBNI, Jatni, INDIA

Outline:

- Physics Motivation
- Experimental observable
- ALICE detector setup
- Results
- Summary

The 18th International Conference on **Strangeness in Quark Matter (SQM 2019)** 10-15 June 2019, Bari (Italy)

Motivation

- ✓ Large initial angular momentum is created in non-central heavy-ion collisions
- ✓ Vector mesons (spin=1) can be polarized due to spin-orbit interaction
- ✓ Spin alignment/polarization is a sensitive probe to vortical structure of QGP, and particle production mechanisms

Goal: Look for signature of these in measurements

Angular distribution of vector mesons

$$\frac{dN}{d\cos\theta^*} = N_0 \left[1 - \rho_{00} + \cos^2\theta^* (3\rho_{00} - 1) \right]$$

K. Schilling, P. Seyboth and G. Wolf, Nucl. Phys. B 15, 397 (1970)

 ρ_{00} = Element of spin density matrix = 1/3 --> No spin alignment

Quantization axis

- Normal to production plane
- Normal to reaction plane

K*0 Vector meson

- Mass: 896 MeV/*c*²
- Spin: 1
- Decays to K⁺ and π^{-} (B.R. ~ 66.6%)
- Quark content (d,s)

- Vector meson
- Mass: 1020 MeV/*c*²
- Spin: 1
- Decays to K⁺ and K⁻ (B.R. ~ 48.9%)
- Quark content (s,s̄)

3

Data set

pp collisions

Heavy-ion collisions

Collision system and energy	pp at 13 TeV, Minimum bias
Rapidity	<i>y</i> < 0.5
No. of events	~ 43 M
Hadrons	K^{*0} and ϕ
Background	Mixed events
Efficiency x acceptance	Corrected
Quantization axis	Normal to Production plane

Collision system and energy	Pb-Pb at 2.76 TeV (K^{*0} and ϕ) and 5.02 TeV (K^{*0})
Rapidity	<i>y</i> < 0.5
No. of events	~ 14 M (2.76 TeV), ~30 M (5.02 TeV)
Hadrons	K ^{*0} and φ
Background	Mixed events
Efficiency x acceptance	Corrected
Quantization axis	Normal to Production plane and Event plane

4

pp is used as a control experiment and that any effect would be most visible in Pb-Pb

Goal: Measure $dN/d\cos\theta^*$ vs. $\cos\theta^*$ and extract ρ_{00} value as a function of $p_{\rm T}$ and centrality

ALICE detector

Invariant mass reconstruction of K*0 vector meson

Same event (signal+bkground) and mixed event (bkground) distributions

Same event distribution after mixed event background subtraction

Yield is the area under **Breit-Wigner distribution**

Invariant mass reconstruction of ϕ vector meson

Same event (signal+bkground) and mixed event (bkground) distributions

Same event distribution after mixed event background subtraction

Yield is the area under Voigitian distribution

7

S.Kundu@SQM-2019

Angular distribution: K^{*0}

Two parameters (N_0 and ρ_{00}) fit to $\cos\theta^*$ distributions measured in different $\rho_{\rm T}$ bins

$$\frac{dN}{d(\cos\theta^*)} = N_0 \times \left[(1 - \rho_{00}) + (1/R)(3\rho_{00} - 1)\cos^2\theta^* \right]$$

R=1 for Production plane measurement

R is the second order event plane resolution for event plane measurement

Angular distribution: ϕ

Two parameters (N_0 and ρ_{00}) fit to $\cos\theta^*$ distributions measured in different $\rho_{\rm T}$ bins

$$\frac{dN}{d(\cos\theta^*)} = N_0 \times \left[(1 - \rho_{00}) + (1/R)(3\rho_{00} - 1)\cos^2\theta^* \right]$$

R=1 for Production plane measurement

R is the second order event plane resolution for event plane measurement

ρ_{00} vs. p_{T} : pp collisions

- ρ_{00} = 1/3 in pp collisions at all measured $\rho_{\rm T}$ region for both K^{*0} and ϕ vector meson
- ✓ No spin alignment observed for vector mesons in pp collisions

ρ_{00} vs. p_{T} : Pb-Pb collisions (ϕ)

- $\rho_{00} = 1/3 \text{ at } p_{_{\rm T}} > 0.8 \text{ GeV/}c$
- ρ_{00} < 1/3 in Pb-Pb collisions at $\rho_{\rm T}$ < 0.8 GeV/c for ϕ meson

Production plane: 1.3 σ deviation from 1/3 for lowest p_{τ} bin

Event plane: 1.4 σ deviation from 1/3 for lowest p_{τ} bin

Measurements from production and event plane are consistent with each other within errors

ρ_{00} vs. p_{T} : Pb-Pb collisions (K*0)

- $\rho_{00} = 1/3 \text{ at } p_{_{\rm T}} > 2.0 \text{ GeV/}c$
- ρ_{00} < 1/3 in Pb-Pb collisions at $\rho_{\rm T}$ < 2.0 GeV/c for K*0

Production plane: 2.5σ deviation from 1/3 for lowest $p_{\scriptscriptstyle T}$ bin

Event plane: 1.8σ deviation from 1/3 for lowest p_{τ} bin

- Measurements from production and event plane are consistent with each other within errors
- Measurements from 2.76 and
 5.02 TeV are consistent with each other

ρ_{00} vs. p_T : Pb-Pb collisions (Comparison with K_s^0)

✓ No spin alignment is observed for spin 0 hadron K_s⁰

Comparison between K^{*0} and ϕ

- ρ_{00} < 1/3 at low $\rho_{\rm T}$ and consistent with 1/3 at high $\rho_{\rm T}$ for both K*0 and ϕ
- For lowest $p_{_{\rm T}}$ bin, ρ_{00} values are about 2.5 σ (1.8 σ) away from 1/3 w.r.t. production plane (event plane) for K^{*0} and 1.3 σ (1.4 σ) away from 1/3 w.r.t. production plane (event plane) for ϕ respectively

Centrality dependence of ρ_{00}

- ho_{00} shows centrality dependence and maximum deviation from 1/3 at mid-central collisions for both K*0 and ϕ
- $m \emph{V}$ Within statistical and systematic uncertainties ho_{00} values are similar in both Production and Event plane method

Summary

- $ho_{00} \sim 1/3$: Spin alignment **not** observed in proton-proton collisions at 13 TeV
- ho ρ ₀₀ consistent with 1/3 at high ρ _T in Pb-Pb collisions for both K*0 and ϕ vector mesons
- ρ_{00} < 1/3 w.r.t. both Event and Production plane in Pb-Pb collisions at low $\rho_{\rm T}$ for both K^{*0} and $\rho_{\rm T}$ vector mesons in mid-central collisions
- ho_{00} shows centrality dependence and maximum deviation for mid-central collisions in both Event and Production plane
- ✓ In mid-central collisions, for lowest $p_{_{\rm T}}$ bin, ρ_{00} values are about 2.7 σ (1.7 σ) away from 1/3 w.r.t. production plane (event plane) for K^{*0} and 1.8 σ (1.4 σ) away from 1/3 w.r.t. production plane (event plane) for ϕ respectively
- $\sim \rho_{\rm no}$ values are similar at both $\sqrt{s_{\rm NN}}$ = 2.76 and 5.02 TeV