

Measurement of elliptic and triangular flow of light (anti-)nuclei with ALICE at the LHC

The 18th International Conference on Strangeness in Quark Matter (SQM 2019) - Bari (Italy)

June 13, 2019

Alberto Calivà for the ALICE Collaboration

GSI Helmholtzzentrum für Schwerionenforschung GmbH

A. Calivà for the ALICE Collaboration

Introduction & motivation

ALICE

Production mechanism of light (anti-)nuclei in high-energy heavy-ion collisions is still not understood

Two phenomenological models are typically used:

- Statistical hadronization model
- Coalescence approach

Introduction & motivation

ALICE

Production mechanism of light (anti-)nuclei in high-energy heavy-ion collisions is still not understood

Two phenomenological models are typically used:

- Statistical hadronization model
- Coalescence approach

Azimuthal flow of light (anti-)nuclei is a key observable to study their production mechanism

Coalescence: flow of light (anti-)nuclei connected to that of individual nucleons

- Mass number scaling (simplistic picture)
- Phase-space distributions of nucleons used to calculate flow of (anti-)nuclei in a more sophisticated approach

Introduction & motivation

ALICE

Production mechanism of light (anti-)nuclei in high-energy heavy-ion collisions is still not understood

Two phenomenological models are typically used:

- Statistical hadronization model
- Coalescence approach

Azimuthal flow of light (anti-)nuclei is a key observable to study their production mechanism

Coalescence: flow of light (anti-)nuclei connected to that of individual nucleons

- Mass number scaling (simplistic picture)
- Phase-space distributions of nucleons used to calculate flow of (anti-)nuclei in a more sophisticated approach

Flow of light (anti-)nuclei could be described by hydrodynamics

> Only simplified approach (Blast-Wave) is available

The ALICE setup and data sample

ITS (Inner Tracking System)

Tracking, vertexing & PID (via dE/dx in silicon)

TPC (Time Projection Chamber)

Tracking & PID (via dE/dx in the gas)

TOF (Time Of Flight)

PID (via TOF measurement)

V0

Centrality and event plane measurements

Data set:

Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

Number of events (×10 ⁶)	Observable
56	v_2 of (anti-)deuterons
48	v_3 of (anti-)deuterons
60	v_2 of (anti-) ³ He

A. Calivà for the ALICE Collaboration

(Anti-)³He identification

10⁴ ALICE Performance Pb–Pb, $Vs_{NN} = 5.02 \text{ TeV}, 0-20\%$ $4 < p_{\perp}/({\rm GeV}/c) < 5$ $3 < p_{T}/(\text{GeV}/c) < 4$ 10 Data Triton Signal (in-plane ³He candidates) Counts -2 Ω 2 0 $dE / dx - \langle dE / dx \rangle_{_{^{3}He}}$ $dE / dx - \langle dE / dx \rangle_{_{^{3}He}}$ TPC TPC ALI-PERF-145054

ALICE

(anti-)³He identification based on the dE/dx measured by the TPC

Negligible contamination from (anti-)⁴He

- > 4 He/ 3 He ~1/300 in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV (**NPA 971 (2018) 1-20**)
- Similar suppression is expected in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

(anti-)³H contamination relevant only for $p_T < 3$ GeV/*c*

(anti-)³H contribution estimated using a Gaussian fit

Signal extraction in the range $|dE/dx - \langle dE/dx \rangle_{_{^{3}He}}| < 3\sigma$

A. Calivà for the ALICE Collaboration

(Anti-)deuteron identification

ALI-PERF-107348

*p*_T < 1 GeV/*c*:

The d*E*/d*x* measured by the TPC is used requiring $|dE/dx - \langle dE/dx \rangle_{d}| < 3\sigma$

(Anti-)deuteron identification

A. Calivà for the ALICE Collaboration

Analysis technique for the (anti-)³He v_2

ALICE

Analysis technique for the (anti-)d $v_2 \& v_3$

Elliptic and triangular flow of (anti-)deuterons measured using the **Scalar Product** (SP) method

$$v_n\{\mathrm{SP}\} = \frac{\langle \langle \mathbf{u}_{n,k} \mathbf{Q}_n^* \rangle \rangle}{\sqrt{\frac{\langle \mathbf{Q}_n \mathbf{Q}_n^{\mathrm{A}*} \rangle \langle \mathbf{Q}_n \mathbf{Q}_n^{\mathrm{B}*} \rangle}{\langle \mathbf{Q}_n^{\mathrm{A}} \mathbf{Q}_n^{\mathrm{B}*} \rangle}}}$$

$$v_n^{\text{tot}}\left(\Delta M\right) = \frac{v_n^{\text{sig}}\left(\Delta M\right) N^{\text{sig}}\left(\Delta M\right) + v_n^{\text{bkg}}\left(\Delta M\right) N^{\text{bkg}}\left(\Delta M\right)}{N^{\text{sig}}\left(\Delta M\right) + N^{\text{bkg}}\left(\Delta M\right)}$$

Signal extraction:

- N_{sig} and N_{bkg} extracted from the fit of (anti-)deuteron yield vs. $\Delta M = M M_{\text{d}}$
- v^{bkg} described using a linear function
 - > v_n^{sig} extracted from the fit of v_n^{tot}

A. Calivà for the ALICE Collaboration

Centrality & p_T dependence of v_2 and v_3

 v_2 of (anti-)deuterons and (anti-)³He:

 Centrality & p_T dependence as expected from relativistic hydrodynamics

A. Calivà for the ALICE Collaboration

Centrality & p_T dependence of v_2 and v_3

 v_2 of (anti-)deuterons and (anti-)³He:

Centrality & p_T dependence as expected from relativistic hydrodynamics

v₃ of (anti-)deuterons:

First measurement

Effects of initial state fluctuations of energy density in the colliding nuclei visible also for (anti-)deuterons

Flow of light (anti-)nuclei

ALICE

A. Calivà for the ALICE Collaboration

Mass ordering at low p_T & slower rise for heavier particles

as expected from relativistic hydrodynamics

v_3 of (anti-)deuterons vs. v_3 of π , K and p

(Anti-)deuteron v_3 increases with p_T and going from central to peripheral collisions

Centrality & p_T dependence of the (anti-)deuteron v_3 consistent with expectations based on the v_3 of identified hadrons

Mass ordering is observed at low p_T

n_q -scaling of v_2 of light (anti-)nuclei

Scaling of v_2 with the number of constituent quarks (n_q):

- Baryons show an approximate scaling vs. p_T/n_q
 - However, deviations up to 50% are observed
- Mesons and baryons show approximate scaling vs. E_{T}^{kin}/n_{q}

A. Calivà for the ALICE Collaboration

A-scaling of v_2 of (anti-)deuterons

Scaling of v_2 with the mass number A (**simple coalescence approach**) is violated in all centrality ranges

The measured v_2 is overestimated by the predictions from simple coalescence > smaller deviations in more peripheral collisions

A-scaling of v_3 of (anti-)deuterons

Mass number scaling seems to be approximately valid for v_3 The uncertainties are larger however ...

A. Calivà for the ALICE Collaboration

v₂ of (anti-)deuterons vs. Blast-Wave

Blast-Wave (BW) predictions for the (anti-)deuteron v_2 from combined fits of v_2 and p_T -spectra of π ,K,p in the p_T ranges:

 $\begin{cases} \pi: p_{T} \in [0.7, 1.5] \text{ GeV/c} \\ \text{K: } p_{T} \in [0.7, 2.0] \text{ GeV/c} \\ \text{p: } p_{T} \in [1.0, 2.5] \text{ GeV/c} \end{cases}$

- Closer to the data in more central collisions
- Deviations in more peripheral collisions

v₂ of (anti-)deuterons vs. Blast-Wave

Blast-Wave (BW) predictions for the (anti-)deuteron v_2 from combined fits of v_2 and p_T -spectra of π ,K,p in the p_T ranges:

- Closer to the data in more central collisions
- Deviations in more peripheral collisions

BW describes (anti-)deuteron v_2 in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV in 0-40%

Eur. Phys. J. C77 (2017) 658

m $\begin{cases} \pi: p_{T} \in [0.7, 1.5] \text{ GeV/c} \\ \text{K: } p_{T} \in [0.7, 2.0] \text{ GeV/c} \\ \text{p: } p_{T} \in [1.0, 2.5] \text{ GeV/c} \end{cases}$

v₂ of (anti-)³He vs. Blast-Wave & Coalescence

 v_2 of (anti-)³He lies between the Blast-Wave and simple coalescence predictions in all centrality ranges

> Consistent with the deuteron v_2 measurement and RHIC results

$v_2 \& v_3 vs. iEBE-VISHNU + Coalescence$

Coalescence model with phase space distributions of nucleons generated by iEBE-VISHNU (PRC 98, 054905 (2018)):

- AMPT initial conditions
- (1+2)d hydro (VISHNU) + UrQMD
- ➤ good description of the data in 0-40%
- no predictions for more peripheral collisions

A. Calivà for the ALICE Collaboration

ALICE

First measurement of the (anti-)deuteron v_3

- Effects of initial-state fluctuations seen for (anti-)deuterons
- > p_T & centrality dependence consistent with identified hadrons

First measurement of the (anti-)deuteron v_3

- Effects of initial-state fluctuations seen for (anti-)deuterons
- > p_T & centrality dependence consistent with identified hadrons
- Simplified hydro (BW) underestimates v₂ of (anti-)deuterons and (anti-)³He
 Closer to the data in more central collisions
- Classical coalescence (based on A-scaling) overestimates the v₂ of (anti-)deuterons and (anti-)³He
 - Closer to the data in more peripheral collisions

First measurement of the (anti-)deuteron v_3

- Effects of initial-state fluctuations seen for (anti-)deuterons
- > p_{T} & centrality dependence consistent with identified hadrons
- Simplified hydro (BW) underestimates v₂ of (anti-)deuterons and (anti-)³He
 Closer to the data in more central collisions
- Classical coalescence (based on A-scaling) overestimates the v₂ of (anti-)deuterons and (anti-)³He
 - Closer to the data in more peripheral collisions

State-of-the-art coalescence + iEBE-VISHNU describes our data in 0-40%

First measurement of the (anti-)deuteron v_3

- Effects of initial-state fluctuations seen for (anti-)deuterons
- > p_{T} & centrality dependence consistent with identified hadrons
- Simplified hydro (BW) underestimates v₂ of (anti-)deuterons and (anti-)³He
 Closer to the data in more central collisions
- Classical coalescence (based on A-scaling) overestimates the v₂ of (anti-)deuterons and (anti-)³He
 - Closer to the data in more peripheral collisions
- State-of-the-art coalescence + iEBE-VISHNU describes our data in 0-40%
- What about full hydrodynamics?

- Effects of initial-state fluctuations seen for (anti-)deuterons
- > p_{T} & centrality dependence consistent with identified hadrons
- Simplified hydro (BW) underestimates v₂ of (anti-)deuterons and (anti-)³He
 Closer to the data in more central collisions
- Classical coalescence (based on A-scaling) overestimates the v₂ of (anti-)deuterons and (anti-)³He
 - Closer to the data in more peripheral collisions
- State-of-the-art coalescence + iEBE-VISHNU describes our data in 0-40%
- What about full hydrodynamics?

Backup slides

A. Calivà for the ALICE Collaboration

Blast-wave predictions of the (anti-)deuteron p_{T} -spectra

Eur. Phys. J. C77 (2017) 658

A. Calivà for the ALICE Collaboration

Blast-wave predictions of the (anti-)deuteron v_2

Eur. Phys. J. C77 (2017) 658

A. Calivà for the ALICE Collaboration