Particle production as a function of UE activity measured with ALICE at the LHC
At LHC high collision energies -> significant contributions from hard processes
 • pQCD precise calculations

Nevertheless particle production dominated by **soft-QCD** processes $p_T \sim \text{few GeV}$
 • non perturbative phenomenology
 • modelling
Introduction

At LHC high collision energies -> significant contributions from hard processes
- pQCD precise calculations

Nevertheless particle production dominated by **soft-QCD** processes $p_T \sim \text{few GeV}$
- non perturbative phenomenology
- modelling

Underlying Event
- Multiple parton interactions (MPI): more than one hard scattering
- semi-hard + soft interactions (ISR/FSR and beam remnants)

Figure adapted from Eur.Phys.J. C62 (2009) 237-242

Valentina Zaccolo – SQM2019
Motivation

\(p_T\) spectra versus multiplicity

Midrapidity multiplicity selection → particle production above 0.8 GeV/c increases with increasing multiplicity

Valentina Zaccolo – SQM2019
Motivation

p_T spectra versus multiplicity

Midrapidity multiplicity selection → particle production above 0.8 GeV/c increases with increasing multiplicity

The effect is reduced using a forward multiplicity estimator → but still visible
Motivation

ρ_T spectra versus multiplicity

Midrapidity multiplicity selection \rightarrow particle production above 0.8 GeV/c increases with increasing multiplicity

The effect is reduced using a forward multiplicity estimator \rightarrow but still visible

- Is it due to the presence of jets which bias the selection?

- Could a jet free multiplicity estimator help to understand the correlation between low and high ρ_T particle production?
Motivation

Multiplicity dependence studies

Non-linear heavy-flavour and high-p_T particle production increase with multiplicity

- effect of multiplicity saturation?
- interplay between multiplicity fluctuations of individual parton interactions and decrease of MPI?

Motivation

Multiplicity dependence studies

Non-linear heavy-flavour and high-p_T particle production increase with multiplicity

- effect of multiplicity saturation?
- interplay between multiplicity fluctuations of individual parton interactions and decrease of MPI?

Could a jet free multiplicity estimator help to understand soft QCD dynamics?

ALICE
JHEP 1509 (2015) 148
arXiv:1905.07208

ALICE pp $\sqrt{s} = 13$ TeV
SPD tracklets mult. estimator

- $4 < p_T < 6$ GeV/c
- $6 < p_T < 10$ GeV/c

EPOS LHC

Stat. unc.
Uncorr. syst. unc.

ALICE pp $\sqrt{s} = 7$ TeV
$2 < p_T < 4$ GeV/c

$<0.5, 2 < p_T < 4$ GeV/c
<10 GeV/c

Data
PYTHIA 8
EPOS LHC

6.46 ± 0.19
6.87
6.85

The ALICE detector
A Large Ion Collider Experiment

- 18 different detector systems
- high-momentum resolution
- excellent PID

solenoidal magnet: 0.5 T

Trigger and event characterisation detectors

Valentina Zaccolo – SQM2019
A Large Ion Collider Experiment

- 18 different detector systems
- high-momentum resolution
- excellent PID

solenoidal magnet: 0.5 T

Data-taking detectors

Tracking

Valentina Zaccolo – SQM2019
A Large Ion Collider Experiment

- 18 different detector systems
- high-momentum resolution
- excellent PID

Data-taking detectors

Tracking

Vertexing

solenoidal magnet: 0.5 T

Valentina Zaccolo – SQM2019
A Large Ion Collider Experiment

- 18 different detector systems
- high-momentum resolution
- excellent PID

Data-taking detectors

Tracking

Vertexing

PID

solenoidal magnet: 0.5 T
\langle p_T \rangle \ vs \ multiplicity
Unfolding of p_T spectra

The correlation between N_{ch} and p_T is experimentally unknown (biased by acceptance and secondaries)
Unfolding of p_T spectra

The correlation between N_{ch} and p_T is experimentally unknown (biased by acceptance and secondaries)

- high resolution response matrix available from MC
- benefit from unfolding application from Bayes’ theorem

Energy dependence of $<p_T>$ versus multiplicity in pp collisions

- $<p_T>$ increases with increasing multiplicity for higher energy
Energy and system–size dependence

Energy dependence of $<p_T>$ versus multiplicity in pp collisions

- $<p_T>$ increases with increasing multiplicity for higher energy

System-size dependence of $<p_T>$ versus multiplicity results

New Results

Valentina Zaccolo – SQM2019
Energy and system–size dependence

Energy dependence of $<p_T>$ versus multiplicity in pp collisions
- $<p_T>$ increases with increasing multiplicity for higher energy

System-size dependence of $<p_T>$ versus multiplicity results
- possibility to reach higher N_{ch} to study the full shape thanks to unfolding

New Results

ALICE Preliminary
charged particles, $\sqrt{s_{NN}} = 5.02$ TeV
$|\eta| < 0.8, 0.15$ GeV/c $< p_T < 50$ GeV/c
p_T spectra vs UE activity
A jet–free multiplicity estimator

What is R_T?

We look for a variable that

1. is not influenced by the initial hard parton scattering
2. can discriminate among soft and hard events
A jet–free multiplicity estimator

What is R_T?

We look for a variable that
1. is not influenced by the initial hard parton scattering
2. can discriminate among soft and hard events

- define the relative transverse activity classifier R_T in the plateau region (jet pedestal)

$$R_T = \frac{N_{\text{inclusive}}}{\langle N_{\text{inclusive}} \rangle}$$

Valentina Zaccolo – SQM2019

A jet–free multiplicity estimator
R_T distribution

Selection done in:

- transverse multiplicity
- plateau region $5 < p_T^{\text{leading}} < 40$ GeV/c
A jet–free multiplicity estimator

\(R_T \) distribution

Selection done in:

- transverse multiplicity
- plateau region \(5 < p_T^{\text{leading}} < 40 \) \(\text{GeV/c} \)
- several \(R_T \) bins to allow to distinguish among low and high UE activity

\[\frac{1}{N_{\text{ev}}} \frac{dN}{dR_T} \]
Transverse p_T distributions

Comparison to inclusive transverse spectra

- clear p_T hardening at high multiplicity in the transverse region → same trend observed for the midrapidity-based multiplicity estimator

Valentina Zaccolo – SQM2019
Transverse p_T distributions

Comparison to inclusive transverse spectra

- clear p_T hardening at high multiplicity in the transverse region \rightarrow same trend observed for the midrapidity-based multiplicity estimator

- measurement (p_T) and selection (multiplicity) are done in the same pseudorapidity region

Valentina Zaccolo – SQM2019
Comparison to inclusive toward spectra

- If the multiplicity is determined in the transverse region, the spectra in the toward (jet) region clearly show the opposite trend.
Toward ρ_T spectra distributions

Comparison to inclusive toward spectra

- If the multiplicity is determined in the transverse region, the spectra in the toward (jet) region clearly show the opposite trend

- we observe convergence to the jet:
 - complete separation among soft (UE) and hard (jet) part of the event at high ρ_T
 - correlation effects are significantly reduced
R_T dependence for transverse and toward

ALICE Preliminary

$pp, \sqrt{s} = 13$ TeV

$|\eta| < 0.8, 2 < p_T < 4$ GeV/c

$5 < p_{T,\text{leading}} < 40$ GeV/c

- Transverse
- Toward
- PYTHIA 8 (Monash 2013)
\(R_T \) dependence

for transverse and toward

- yield in transverse vs \(R_T \)
- same behavior observed using the midrapidity–based multiplicity estimator

ALICE preliminary

\[pp, \sqrt{s} = 13 \text{ TeV} \]

\[|\eta| < 0.8, 2 < p_T < 4 \text{ GeV/c} \]

\[5 < p_{T, \text{leading}} < 40 \text{ GeV/c} \]

- Transverse
- Toward

PYTHIA 8 (Monash 2013)
yield in toward vs R_T

- does not converge to 0
 - at $R_T = 0$ we can have a jet
 - possibility to study hard object with almost no UE activity!

ALICE Preliminary

- $|\eta| < 0.8$, $2 < p_T < 4$ GeV/c
- $5 < p_{T,\text{leading}} < 40$ GeV/c

- Transverse
- Toward

PYTHIA 8 (Monash 2013)
R_T dependence for transverse and toward

- yield in toward vs R_T
 - does not converge to 0
 - at $R_T = 0$ we can have a jet
 - possibility to study hard object with almost no UE activity!
 - it is linear
 - not the same as heavy flavours!

New Results

ALICE, pp, $\sqrt{s} = 13$ TeV

$|y| < 0.8, 2 < p_T < 4$ GeV/c
$5 < p_{T,leading} < 40$ GeV/c

Transverse
Toward

PYTHIA 8 (Monash 2013)
\(R_T \) dependence for transverse and toward

- Yield in toward vs \(R_T \):
 - Does not converge to 0
 - At \(R_T = 0 \) we can have a jet
 - Possibility to study hard object with almost no UE activity!
 - It is linear
 - Not the same as heavy flavours!
 - PYTHIA 8.2 reproduces very well the observed trends
<p>Summary and outlook</p>

- **<p>_T vs multiplicity:**
 - high resolution energy and system-size study capabilities due to unfolding

- **Transverse \(p_T \) spectra:**
 - hardening at high multiplicity \(\rightarrow \) confirms the trend observed using the midrapidity multiplicity estimator

- **Toward \(p_T \) spectra:**
 - separation among soft (UE) and hard (jet) part of the event, at high \(p_T \)
 - no \(R_T \) saturation \(\rightarrow \) no autocorrelation effects at play!
 - still possible to have a jet at \(\sim 0 \) UE activity
 \(\rightarrow \) unique opportunity to relate to elementary systems like \(e^+e^- \)
Summary and outlook

- $<p_T>$ vs multiplicity:
 - high resolution energy and system-size study capabilities due to unfolding

- Transverse p_T spectra:
 - hardening at high multiplicity \rightarrow confirms the trend observed using the midrapidity multiplicity estimator

- Toward p_T spectra:
 - separation among soft (UE) and hard (jet) part of the event, at high p_T
 - no R_T saturation \rightarrow no autocorrelation effects at play!
 - still possible to have a jet at \sim 0 UE activity
 \rightarrow unique opportunity to relate to elementary systems like e^+e^-

R_T is an effective instrument to disentangle jet and UE components of the spectra

\rightarrow Promising for identified particle yields study, both for light and heavy flavours
Backup slides