Higher moments of net-particle fluctuations in $\mathrm{Pb}-\mathrm{Pb}$ collisions from ALICE

Mesut Arslandok
Physikalisches Institut, Heidelberg University on behalf of the ALICE Collaboration

The $18^{\text {th }}$ International Conference on Strangeness in Quark Matter 10-15 June 2019, Bari, Italy

Why Ebye fluctuations?

> Study dynamics of the phase transitions
> Locate phase boundaries

Why Ebye fluctuations?

Study dynamics of the phase transitions
$>$ Locate phase boundaries

$$
T_{f o}^{A L I C E}=156.5 \pm 3 \mathrm{MeV}
$$

Why Ebye fluctuations?

Study dynamics of the phase transitions
 $>$ Locate phase boundaries

HotQCD Collaboration
Phys.Rev. D85 (2012) 054503, arXiv:1904.09951

Why net-baryon fluctuations?

For a thermal system within the Grand Canonical Ensemble

$$
\frac{P}{T^{4}}=\frac{1}{V T^{3}} \ln Z\left(V, T, \mu_{B, Q, S}\right) \rightleftharpoons \hat{\chi}_{n}^{N=B, S, Q}=\frac{\partial^{n} P / T^{4}}{\partial\left(\mu_{N} / T\right)^{n}}
$$

Susceptibilities

Why net-baryon fluctuations?

For a thermal system within the Grand Canonical Ensemble

$$
\frac{P}{T^{4}}=\frac{1}{V T^{3}} \ln Z\left(V, T, \mu_{B, Q, S}\right) \Rightarrow \hat{\chi}_{n}^{N=B, S, Q}=\frac{\partial^{n} P / T^{4}}{\partial\left(\mu_{N} / T\right)^{n}} \downarrow \hat{\chi}_{2}^{B}=\frac{\kappa_{2}\left(\Delta N_{B}\right)}{V T^{3}} \Rightarrow \frac{\kappa_{4}\left(\Delta N_{B}\right)}{\kappa_{2}\left(\Delta N_{B}\right)}=\frac{\hat{\chi}_{4}^{B}}{\hat{\chi}_{2}^{B}}
$$

Susceptibilities

Cumulants
P. Braun-Munzinger, A. Rustamov, J. Stachel Nuclear Physics A 960 (2017) 114-130

Why net-baryon fluctuations?

For a thermal system within the Grand Canonical Ensemble

$$
\frac{P}{T^{4}}=\frac{1}{V T^{3}} \ln Z\left(V, T, \mu_{B, Q, S}\right) \Rightarrow \hat{\chi}_{n}^{N=B, S, Q}=\frac{\partial^{n} P / T^{4}}{\partial\left(\mu_{N} / T\right)^{n}} \Rightarrow \hat{\chi}_{2}^{B}=\frac{\kappa_{2}\left(\Delta N_{B}\right)}{V T^{3}} \Rightarrow \frac{\kappa_{4}\left(\Delta N_{B}\right)}{\kappa_{2}\left(\Delta N_{B}\right)}=\frac{\hat{\chi}_{4}^{B}}{\hat{\chi}_{2}^{B}}
$$

Susceptibilities

Cumulants
P. Braun-Munzinger, A. Rustamov, J. Stachel Nuclear Physics A 960 (2017) 114-130

> At $4^{\text {th }}$ order LQCD shows a deviation from Hadron Resonance Gas (HRG)

Interpretation of net-baryon fluctuations

We need a baseline: Skellam distribution

$$
X=N_{B}-N_{\bar{B}}
$$

$>\mathrm{r}^{\text {th }}$ central moment:

$$
\mu_{r} \equiv\left\langle(X-\langle X\rangle)^{r}\right\rangle=\sum_{X}(X-\langle X\rangle)^{r} P(X)
$$

$>$ First four cumulants

$$
\begin{aligned}
& \kappa_{1}=\langle X\rangle, \quad \kappa_{2}=\mu_{2}, \\
& \kappa_{3}=\mu_{3,}, \quad \kappa_{4}=\mu_{4}-3 \mu_{2}^{2}
\end{aligned}
$$

We need a baseline: Skellam distribution

$$
X=N_{B}-N_{\bar{B}}
$$

$>\mathrm{r}^{\text {th }}$ central moment:

$$
\mu_{r} \equiv\left\langle(X-\langle X\rangle)^{r}\right\rangle=\sum_{X}(X-\langle X\rangle)^{r} P(X)
$$

$>$ First four cumulants

$$
\begin{aligned}
& \kappa_{1}=\langle X\rangle, \quad \kappa_{2}=\mu_{2}, \\
& \kappa_{3}=\mu_{3}, \quad \kappa_{4}=\mu_{4}-3 \mu_{2}^{2}
\end{aligned}
$$

> Uncorrelated Poisson limit:

$$
\left\langle N_{B} N_{\bar{B}}\right\rangle=\left\langle N_{B}\right\rangle\left\langle N_{\bar{B}}\right\rangle
$$

Difference between two independent Poissonian distributions

$$
\kappa_{n}=\left\langle N_{B}\right\rangle+(-1)^{n}\left\langle N_{\bar{B}}\right\rangle
$$

$$
\frac{\kappa_{2 n+1}}{\kappa_{2 k}}=\frac{\left\langle n_{B}\right\rangle-\left\langle n_{\bar{B}}\right\rangle}{\left\langle n_{B}\right\rangle+\left\langle n_{\bar{B}}\right\rangle}
$$

Importance of acceptance

> Fluctuations of net-baryons appear only inside finite acceptance
> Baryon number conservation imposes subtle correlations

Importance of acceptance

> Fluctuations of net-baryons appear only inside finite acceptance
> Baryon number conservation imposes subtle correlations

$>$ Limit of very small acceptance

- vanishing or invisible dynamical fluctuations
$>$ Acceptance has to be large enough

Net-proton vs Net-baryon

$>$ Due to isospin randomization, at $\sqrt{S_{\mathrm{NN}}}>10 \mathrm{GeV}$ net-baryon fluctuations can be obtained from corresponding net-proton measurements (M. Kitazawa, and M. Asakawa, Phys. Rev. C 86, 024904 (2012))

Net-proton vs Net-baryon

$>$ Due to isospin randomization, at $\sqrt{S_{\mathrm{NN}}}>10 \mathrm{GeV}$ net-baryon fluctuations can be obtained from corresponding net-proton measurements (M. Kitazawa, and M. Asakawa, Phys. Rev. C 86, 024904 (2012))

Net-proton vs Net-baryon

$>$ Due to isospin randomization, at $\sqrt{S_{\mathrm{NN}}}>10 \mathrm{GeV}$ net-baryon fluctuations can be obtained from corresponding net-proton measurements (M. Kitazawa, and M. Asakawa, Phys. Rev. C 86, 024904 (2012))

Effect of baryon number conservation has to be taken into account

RESULTS

A Large Ion Collider Experiment

Main detectors used:

> Inner Tracking System (ITS)

- Tracking and vertexing
> Time Projection Chamber (TPC)
- Tracking and Particle identification (PID)
$>$ Time Of Flight (TOF)
- PID
$>$ Vertex $\mathbf{0}(\mathrm{VO}) \leftarrow$
- Centrality determination

Data Set:

> $\mathrm{Pb}-\mathrm{Pb}$ collisions

- $\sqrt{S_{N N}}=5.02 \mathrm{TeV}, \sim 60 \mathrm{M}$ events
- $\sqrt{S_{N N}}=2.76 \mathrm{TeV}, \sim 12 \mathrm{M}$ events

$>$ Model
- HIJING, ~6 M events

Particle

Identification

Cut-based vs Identity method

Cut-based approach: count tracks of a given particle type

Cut-based vs Identity method

Cut-based approach: count tracks of a given particle type Identity method: count probabilities to be of a given particle type

ALI-PERF-3849

$$
\omega_{\pi}^{(1)}=1, \omega_{\pi}^{(2)} \cong 0.6, \underline{\omega_{\pi}^{(3)}=0}, \omega_{\pi}^{(4)}=0 \Rightarrow W_{\pi}=1.6 \neq N_{\pi}
$$

Cut-based vs Identity method

$$
\left\langle N_{j}^{n}\right\rangle=\mathrm{A}^{-1}\left\langle W_{j}^{n}\right\rangle
$$

Cut-based vs Identity method

$$
\left\langle N_{j}^{n}\right\rangle=\mathrm{A}^{-1}\left\langle W_{j}^{n}\right\rangle
$$

> Cut-based approach

- Uses additional detector information or reject a given phase space bin
- Challenge: efficiency correction and contamination
$>$ Identity Method
- Gives folded multiplicity distribution
- Allows for larger efficiencies \rightarrow smaller correction needed
- Ideal approach for low momentum ($p<2 \mathrm{GeV} / \mathrm{c}$)

Identity Method: $2^{\text {nd }}$ order cumulants of net-p

Identity Method: $2^{\text {nd }}$ order cumulants of net-p

Identity Method: $2^{\text {nd }}$ order cumulants of net-p

Identity Method: $2^{\text {nd }}$ order cumulants of net-p

Identity Method: $2^{\text {nd }}$ order cumulants of net- Λ

Identity Method: $2^{\text {nd }}$ order cumulants of net- Λ

Alice Ohlson, QM2018, NPA 982 (2019) 299

Similar trend as for net-p
$>$ Better precision is needed to disentangle global vs local conservation laws

$3^{\text {rd }}$ and $4^{\text {th }}$ order net-p

$>$ So far only cut-based results within small kinematic acceptance

$3^{\text {rd }}$ and $4^{\text {th }}$ order net-p

>So far only cut-based results within small kinematic acceptance
$\mathrm{C}_{3} / \mathrm{C}_{2}$ and $\mathrm{C}_{4} / \mathrm{C}_{2}$ at LHC within uncertainties are consistent with Skellam?

$3^{\text {rd }}$ and $4^{\text {th }}$ order net-p

$>\boldsymbol{\sim 3 0 \%}$ difference between LQCD and HRG
Identity Method (in progress) will increase acceptance leading to be a better sensitivity of these differences

Summary

> Technical:

- Identity method maximizes efficiency and solves misidentification problem
- Efficiency correction and volume fluctuations are crucial.
- Acceptance has to be large enough to see dynamical fluctuations

> Physics:

- Deviation from Skellam baseline observed in the $2^{\text {nd }}$ order level is due to baryon number conservation
- Analysis of $3^{\text {rd }}$ and $4^{\text {th }}$ cumulants with identity method in extended acceptance in p_{T}

Summary

> Technical:

- Identity method maximizes efficiency and solves misidentification problem
- Efficiency correction and volume fluctuations are crucial.
- Acceptance has to be large enough to see dynamical fluctuations

> Physics:

- Deviation from Skellam baseline observed in the $2^{\text {nd }}$ order level is due to baryon number conservation
- Analysis of $3^{\text {rd }}$ and $4^{\text {th }}$ cumulants with identity method in extended acceptance in p_{T}

Holy grail: see critical behavior in $6^{\text {th }}$ and higher order cumulants

RUN1: $2^{\text {nd }}$ order ($\sim 13 M$ min. bias events)
RUN2: $4^{\text {th }}$ order (${ }^{\sim} 150 \mathrm{M}$ central events)
RUN3: $6^{\text {th }} \ldots \quad$ ($>1000 \mathrm{M}$ central events)

BACKUP

Net-particle fluctuations vs HIJING

A. Rustamov

Nucl.Phys. A967 (2017) 453-456

Effects from conservation laws

> Deviations from unity are driven
> by different mechanisms

Volume Fluctuations

Volume Fluct.: $2^{\text {nd }}$ order

$150 * 10^{6}$ Events

$$
\begin{array}{r}
k_{2}(p-\bar{p})=\left\langle N_{w}\right\rangle k_{2}(n-\bar{n})+\left\langle\begin{array}{c}
\langle\bar{n}\rangle^{2}
\end{array} k_{2}\left(N_{w}\right)\right. \\
\text { vanishes for ALICE }
\end{array}
$$

$$
\begin{gathered}
k_{2}(p)=\left\langle N_{w}\right\rangle k_{2}(n)+\langle\underset{\downarrow}{n}\rangle^{2} k_{2}\left(N_{w}\right) \\
\text { does not vanish }
\end{gathered}
$$

n, \bar{n} from single wounded nucleon

Volume Fluct.: $3^{\text {rd }}$ order

$k_{3}(p-\bar{p})=\left\langle N_{w}\right\rangle k_{3}(n-\bar{n})+\langle n-\bar{n}\rangle(\ldots)$
vanishes for ALICE

$$
k_{3}(p)=\left\langle N_{w}\right\rangle k_{3}(n)+\langle n\rangle(\ldots)
$$

does not vanish
n, \bar{n} from single wounded nucleon

Volume Fluct.: $4^{\text {th }}$ order

$n, \bar{n} \rightarrow$ from single wounded nucleon
vanishes for ALICE
volume fluctuations has to be taken into account

Solution for volume fluct : CBWC ???

$>$ Subdividing a given centrality bin into smaller ones and then merging them together incoherently.
> Incoherent addition of data from intervals with very small centrality bin width will eliminate true dynamical fluctuations.

Better publish uncorrected results

What if the efficiency loss is not binomial?

Simulate efficiency loss

- Correct with Binomial assumption
- Correct with "detector response"

Efficiency loss shape has to be checked before

Hypergeometric

Beta-binomial

How does it work?

$>$ Produce sample events of N assuming the Poisson distribution ($\mathrm{N}=$ =number of particles in a given event)
> Model the efficiency loss with

$$
\mathcal{R}_{\mathrm{HG}}(n ; N) \text { or } \mathcal{R}_{\beta}(n ; N)
$$

Polynomial fit of the moments

$$
R_{m}(N)=\sum_{j=0}^{L} r_{m j} N^{j}
$$

Efficiency correction: $\kappa_{2}(p-\bar{p}) / \kappa_{2}($ Skellam $)$

Efficiency correction: $\kappa_{3}(p-\bar{p}) / \kappa_{2}(p-\bar{p})$

Efficiency correction with binomial assumption:

T. Nonaka, M. Kitazawa, S. Esumi, Phys. Rev. C 95, 064912 (2017)

Adam Bzdak, Volker Koch, Phys. Rev. C86, 044904 (2012)

