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Motivation: Criticality at crossover 

E-by-E	fluctuations:	
	

Ø 	To	study		dynamics	of	the	phase	
								transitions	
Ø  	To	locate	phase	boundaries	

		Tc
lattice =154±9MeV , TfoALICE =156±3MeV

freeze-out	at	the	phase	boundary!	

A.	Bazavov	et	al.,	Phys.Rev.	D85	(2012)	054503		
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Criticality at crossover 

A. Rustamov, EMMI workshop on fluctuations, China, Wuhan, 10-13 October, 2017 

		Tc
lattice =154±9MeV , TfoALICE =156±3MeV

freeze-out	at	the	phase	boundary	
Ni =V gi

2π 2
p2dp

exp Ei − µi( ) T⎡⎣ ⎤⎦ ±10

∞

∫

µi = µBBi + µsSi + µI Ii

y	axis:	9	orders	of	magnitude;	works	in	the	energy	range	spanning	by	3	orders	of	magnitude	

A.	Bazavov	et	al.,	Phys.Rev.	D85	(2012)	054503		
ALICE,	PLB	726	(2013)	610	
J.	Stachel,		A.	Andronic,	P.	Braun-Munzinger	and	K.	Redlich	
J.	Phys.	Conf.	Ser.	509	(2014)	012019	

𝑇"#$%&'( = 156.5 ± 3𝑀𝑒𝑉
A.	Andronic,	P.	Braun-Munzinger,	J.	Stachel and	K.	Redlich	
Nature	561,	321–330	(2018),	ALICE,	PLB	726	(2013)	610
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Why	net-baryon fluctuations?

P
T 4 =

1
VT 3 lnZ V ,T ,µB ,Q ,S( ) χ̂n

N=B ,S ,Q =
∂n P T 4

∂ µN T( )
n

Susceptibilities

SQM,	11.06.2019

For	a	thermal	system	within	the	Grand	Canonical	Ensemble
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Why	net-baryon fluctuations?

Cumulants

P
T 4 =

1
VT 3 lnZ V ,T ,µB ,Q ,S( ) χ̂n

N=B ,S ,Q =
∂n P T 4

∂ µN T( )
n

Susceptibilities

χ̂4
B

χ̂2
B=

κ 4 ΔNB( )
κ 2 ΔNB( )χ̂2

B =
κ 2 ΔNB( )
VT 3

Higher	orders	
P.	Braun-Munzinger,	A.	Rustamov,		J.	Stachel

Nuclear	Physics	A	960	(2017)	114–130
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For	a	thermal	system	in	a	fixed	volume	V	within	the	Grand	Canonical	Ensemble
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– – agreement between HRG and QCD will start to deteriorate for T>150 MeVagreement between HRG and QCD will start to deteriorate for T>150 MeV

– – net baryon-number fluctuations in QCD always smaller than in HRG fornet baryon-number fluctuations in QCD always smaller than in HRG for
      T>150 MeVT>150 MeV
      

for simplicity:

HRG vs. QCDHRG vs. QCD
net baryon-number fluctuations  net baryon-number fluctuations  
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Interpretation	of
net-baryon	fluctuations	
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We	need	a	baseline:	Skellam	distribution
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Bridge	to	Theory

MIAPP	Workshop,	06.09.2018

Net-particle cumulants, definitions

A. Rustamov, FSP meeting, 3-5 September 2018, Bad Honnef
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Ø rth central	moment:

Ø First	four	cumulants
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Ø rth central	moment:

Ø First	four	cumulants

Ø Uncorrelated	Poisson	limit:	
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Difference	between	two	
independent	Poissonian distributions

2 P. Braun-Munzinger, A. Rustamov, J. Stachel / Nuclear Physics A 00 (2018) 1–5

(HRG) model predictions [3] to the hadron multiplicities measured by ALICE. This agreement implies that
strongly interacting matter, created in collisions of Pb nuclei at LHC energies, freezes out in close vicinity
of the chiral phase transition line. Hence, singularities stemming from a second order phase transition can
be captured also at vanishing net-baryon densities. The current measurements, by the STAR collaboration at
RHIC, and by ALICE at the LHC, have provided interesting and stimulating results. However, quantitative
analysis of these measurements is made di�cult by the presence of non-critical e↵ects such as volume or
participant fluctuations and by correlations introduced by overall baryon number conservation.

Conserved quantities fluctuate only in sub-regions of the available total phase space of the reaction. In
statistical mechanics they are hence predicted within the Grand Canonical Ensemble (GCE) [4] formulation,
where only the average values of net-baryons are conserved [4]. To compare theoretical calculations within
GCE, such as HRG [3] and LQCD [1], to experimental results, the requirements of GCE have to be achieved
in experiments. In experiments over the full acceptance, baryon number is conserved in each event, hence
even in a limited acceptance its implications will be seen. Here, using the CE, we provide quantitative
estimates of the implication of baryon conservation in a finite acceptance.

2. Fluctuations in GCE and CE

In a thermal system with an ideal gas EoS, composed of baryon/anti-baryon species with baryon numbers
+1 and -1, GCE partition function yields the uncorrelated Poisson distributions for baryons and anti-baryons,
hence the net-baryon distribution has the following cumulants [5]1:

n(S kellam) = hnBi + (�1)n hnB̄i , (1)

where hnBi and hnB̄i denote the first cumulants (mean numbers) of baryons and anti-baryons, respectively.
Eq. (1) implies that ratios of even-to-even and odd-to-odd cumulants of net-baryons are always unity, while
the ratios of odd-to-even cumulants depend on mean multiplicities.

2n+1

2k

=
hnBi � hnB̄i
hnBi + hnB̄i

. (2)

Hitherto, the above conditions are used as baseline for net-baryon fluctuations. However, this can lead
to misleading conclusions because, apart from dynamical fluctuations induced by critical phenomena, de-
viations from this baseline may be driven by non-dynamical contributions. Recently we demonstrated that
fluctuations of participating nucleons from event-to-event significantly distort measured event-by-event fluc-
tuation signals [5]. At low energies2, participant fluctuations always increase the measured dynamical fluc-
tuations up to the third cumulant of net-proton distributions. In contrast, starting from the fourth cumulant,
they can in fact decrease the signal. Below, we consider the CE partition function to investigate e↵ects of
exact baryon number conservation. It is

ZCE(V,T, B) =
1X

NB=0

1X

NB̄=0

(�BzB)NB

NB!
(�B̄zB̄)NB̄

NB̄!
�(NB � NB̄ � B) =

 
zB

zB̄

! B

2

IB(2
p

zBzB̄)
�����
�B,B̄=1

, (3)

where IB denotes the modified Bessel function, �B,B̄ are fugacities and zB,B̄ stand for single particle partition
functions of baryons and anti-baryons respectively. The � function in Eq. (3) guarantees that, in each event,
the net number of baryons is fixed, i.e, net-baryons do not fluctuate from event-to-event. In order to get
finite fluctuations for net-baryons, distributions of baryons and anti-baryons have to be folded with the

1The probability distribution of the di↵erence of two random variables each generated from uncorrelated Poisson distributions is
called Skellam distribution.

2We note that at LHC energies, where mean numbers of net-baryons measured at mid-rapidity are zero, contributions from partici-
pant fluctuations to second and third cumulants of net-baryon distributions are vanishing.

Mesut	Arslandok,	Heidelberg	(PI)SQM,	11.06.2019
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Ø Fluctuations	of	net-baryons	appear	only	inside	finite	acceptance
Ø Baryon	number	conservation	imposes	subtle	correlations	

24 

Technical details 
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Ø Limit	of	very	small	acceptance	
• vanishing	or	invisible	dynamical	

fluctuations	
Ø Acceptance	has	to	be	large	enough	
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Ø Due	to	isospin	randomization,	at	 𝑠66� >	10	GeV	net-baryon fluctuations	can	be	obtained	from	
corresponding	net-protonmeasurements (M.	Kitazawa,	and	M.	Asakawa, Phys.	Rev.	C	86,	024904	(2012))
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M. Kitazawa, and M. Asakawa, Phys. Rev. C86 (2012) 

Experimental approach
measurement of fluctuations of other baryons
to improve understanding of net-baryon baseline
to study correlated baryon-strangeness fluctuations

Phenomenological approach

due to isospin randomization at !"" > 10&'(

in this case net-baryon fluctuations can be easily 
obtained from corresponding net-proton measurements
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Ø Net-baryon	vs	Net-p
Ø Due	to	isospin	randomization at	 566� >	10	GeV

net-baryon	fluctuations	can	be	easily	obtained	
from	corresponding	net-proton	measurements	
M.	Kitazawa,	and	M.	Asakawa,	Phys.	Rev.	C86	(2012)

P.	Braun-Munzinger,	A.	Rustamov,	J.	Stachel
QM18,	NPA	982	(2019)	307-310	

Effects	from	conservation	laws	

o Effect	of	baryon	number	conservation	
has	to	be	taken	into	account	

o Proper	conversion	from	net-p	to	net-baryon

ALI-SIMUL-314695

SQM,	11.06.2019
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Effect	of	baryon	number	conservation	has	to	be	taken	into	account
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Ø Due	to	isospin	randomization,	at	 𝑠66� >	10	GeV	net-baryon fluctuations	can	be	obtained	from	
corresponding	net-protonmeasurements (M.	Kitazawa,	and	M.	Asakawa, Phys.	Rev.	C	86,	024904	(2012))
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A Large	Ion	Collider	Experiment	
Main	detectors	used:

Ø Inner	Tracking	System	(ITS)	
• Tracking	and	vertexing

Ø Time	Projection	Chamber	(TPC)
• Tracking	and	Particle	

identification	(PID)
Ø Time	Of	Flight	(TOF)

• PID
Ø Vertex	0 (V0)

• Centrality	determination

Data	Set:

Ø Pb-Pb collisions
• 𝑠99� = 5.02	TeV,		~60	M	events
• 𝑠99� = 2.76	TeV,		~12	M	events

Ø Model	
• HIJING,	~6	M	events

SQM,	11.06.2019
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Particle	
Identification

SQM,	11.06.2019

A. Rustamov, EMMI Workshop, 25-29 March, 2019, GSI.

∆" > ∆"$%&: conservations dominate
∆" < ∆"$%&: dynamical fluctuations may disappear,

(approaching  Poisson limit)
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To achieve requirements of GCE
cuts in >?, ΔA or ∆) are imposed
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Cut-based vs	Identity	method

Cut-based	approach:	count	tracks of	a	given	particle	type
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1 3 42

ωπ
(1) =1,   ωπ

(2) ≅ 0.6,   ωπ
(3) = 0,   ωπ

(4) = 0  ⇒  Wπ =1.6 ≠ Nπ

A.	Rustamov,	M.	Gazdzicki,	M.	I.	Gorenstein,	PRC	86,	044906	(2012),	PRC	84,	024902	(2011)
A.	Rustamov,	M.	Arslandok,	arXiv:1807.06370,	NIM	in	print

SQM,	11.06.2019

Cut-based vs	Identity	method

Cut-based	approach:	count	tracks of	a	given	particle	type
Identity	method:								count	probabilities to	be	of	a	given	particle	type
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Cut-based vs	Identity	method

12Mesut	Arslandok,	Heidelberg	(PI)

A. Rustamov, EMMI Workshop, 25-29 March, 2019, GSI.
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traditional approach

use additional detector information
or reject a given phase space bin

( challenge: efficiency correction )

gives folded multiplicity distribution

easier to correct for inefficiencies

single event example : 3 protons, 2 kaons

Identity method approach

16

Analysis technique

Ø Cut	based	approach	
• Use	additional	detector	information	or	reject	a	given	phase	space	bin
• Challenge:	efficiency	correction	and	contamination

Ø Identity	Method	
• Gives	folded	multiplicity	distribution	
• Easier	to	correct	inefficiencies
• Ideal	approach	for	low	momentum	(p<2	GeV/c)

>?@ =	ABC D?@

SQM,	11.06.2019

Cut	based vs	Identity	method

𝑁?@ =	ABC 𝑊?@
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Ø Cut-based	approach	
• Uses	additional	detector	information	or	reject	a	given	phase	space	bin
• Challenge:	efficiency	correction	and	contamination

Ø Identity	Method	
• Gives	folded	multiplicity	distribution	
• Allows	for	larger	efficiencies	à smaller	correction	needed
• Ideal	approach	for	low	momentum	(p<2	GeV/c)

SQM,	11.06.2019

Cut-based vs	Identity	method

12Mesut	Arslandok,	Heidelberg	(PI)

A. Rustamov, EMMI Workshop, 25-29 March, 2019, GSI.
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• Use	additional	detector	information	or	reject	a	given	phase	space	bin
• Challenge:	efficiency	correction	and	contamination

Ø Identity	Method	
• Gives	folded	multiplicity	distribution	
• Easier	to	correct	inefficiencies
• Ideal	approach	for	low	momentum	(p<2	GeV/c)

>?@ =	ABC D?@

SQM,	11.06.2019

Cut	based vs	Identity	method

𝑁?@ =	ABC 𝑊?@
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Alice	Ohlson,	QM2018,	NPA	982	(2019)	299

Ø Similar	trend	as	for	net-p
Ø Better	precision	is	needed	to	disentangle	global	vs	local	conservation	laws

Mesut	Arslandok,	Heidelberg	(PI)SQM,	11.06.2019
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Both ALICE and STAR attempting to improve pT acceptance

measured with the traditional approach in a rather small pT acceptance
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3rd and	4th order	net-p
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Ø So	far	only	cut-based	results	within	small	kinematic	acceptance	
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3rd and	4th order	net-p
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Ø So	far	only	cut-based	results	within	small	kinematic	acceptance	

Ø C3/C2 and	C4/C2 at	LHC	within	uncertainties	are	consistent	with	Skellam?
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3rd and	4th order	net-p

SQM,	11.06.2019

Ø ~30%	difference	between	LQCD	and	HRG

Ø Identity	Method	(in	progress)	will	increase	acceptance	leading	to	be	a	
better	sensitivity	of	these	differences

3

For	a	thermal	system	in	a	fixed	volume	V	within	the	Grand	Canonical	Ensemble

Mesut	Arslandok,	Heidelberg	(PI)

  

F. Karsch, Quark Matter  2017 F. Karsch, Quark Matter  2017 18

– – agreement between HRG and QCD will start to deteriorate for T>150 MeVagreement between HRG and QCD will start to deteriorate for T>150 MeV

– – net baryon-number fluctuations in QCD always smaller than in HRG fornet baryon-number fluctuations in QCD always smaller than in HRG for
      T>150 MeVT>150 MeV
      

for simplicity:

HRG vs. QCDHRG vs. QCD
net baryon-number fluctuations  net baryon-number fluctuations  

Phys.	Rev.	D	95	(2017),	0545042nd 4th 6th

Why	net-baryon fluctuations?

Cumulants

P
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1
VT 3 lnZ V ,T ,µB ,Q ,S( ) χ̂n

N=B ,S ,Q =
∂n P T 4

∂ µN T( )
n

Susceptibilities

χ̂4
B

χ̂2
B=κ 4 ΔNB( )

κ 2 ΔNB( )χ̂2
B =

κ 2 ΔNB( )
VT 3

Higher	orders	
P.	Braun-Munzinger,	A.	Rustamov,		J.	Stachel

Nuclear	Physics	A	960	(2017)	114–130

Ø At	4th order	LQCD	shows	a	deviation from	Hadron	Resonance	Gas	(HRG)	
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Summary
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Ø Technical:
• Identity	method	maximizes	efficiency	and	solves	misidentification	problem
• Efficiency	correction	and	volume	fluctuations	are	crucial.
• Acceptance has	to	be	large	enough to	see	dynamical	fluctuations

Ø Physics:
• Deviation from	Skellam	baseline	observed	in	the	2nd order	level	is	due	to

baryon	number	conservation
• Analysis	of	3rd and	4th cumulants	with	identity	method	in	extended	acceptance	in	pT
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Figure 4: The sixth and eighth order cumulants of the net baryon number
fluctuations at µq/T = 0 in the PQM model. The temperature is given in
units of the pseudo-critical temperature Tpc(mπ) corresponding to a maxi-
mum of the the chiral susceptibility. The shaded area indicates the chiral
crossover region.

these derivatives have been implemented directly into the analysis of the
flow equations (see Appendix).

In Fig. 4 we show the sixth and eighth order cumulants of the net baryon
number fluctuations computed at µq/T = 0 within the PQM model for phys-
ical values of the pion mass. The basic features dictated by O(4) symmetry
restoration, as discussed in the previous sections, are readily identified in the
figure. Moreover, the positions of the two extrema of χB

6 correspond approx-
imately to the zeros of χB

8 . This confirms that in the transition region, two
derivatives with respect to µq/T are indeed equivalent to one derivative with
respect to T .

From these calculations, as well as from calculations of the lower order
cumulants χB

2 and χB
4 , we obtain the ratios RB

n,m of the n-th and m-th cu-
mulants. Results obtained for µq/T = 0 and µq/T > 0 are shown in Figs. 5
and 6, respectively. We note that these ratios approach unity at low tem-
peratures, as it is the case also in the hadron resonance gas model. In the
transition region, they reflect the expected O(4) scaling properties; they have
a shallow maximum close to the transition region before they drop sharply.
In particular, they show pronounced minima with RB

n,2 < 0 in the vicinity
of the chiral crossover temperature. The exact location of these minima and

13

RUN1:	2nd order	(~13M	min.	bias	events)

RUN2:	4th order	(~150M	central	events)

RUN3:	6th … (>1000M	central	events)

B.	Friman,	F.	Karsch,	K.	Redlich,	V.	Skokov Eur.	Phys.	J.	C	(2011)	71:	1694

Holy	grail:	see	critical	behavior	in	6th and	higher	order	cumulants

Ø Technical:
• Identity	method	maximizes	efficiency	and	solves	misidentification	problem
• Efficiency	correction	and	volume	fluctuations	are	crucial.
• Acceptance has	to	be	large	enough to	see	dynamical	fluctuations

Ø Physics:
• Deviation from	Skellam	baseline	observed	in	the	2nd order	level	is	due	to

baryon	number	conservation
• Analysis	of	3rd and	4th cumulants	with	identity	method	in	extended	acceptance	in	pT
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      T>150 MeVT>150 MeV
      

for simplicity:

HRG vs. QCDHRG vs. QCD
net baryon-number fluctuations  net baryon-number fluctuations  

Phys.	Rev.	D	95	(2017),	0545042nd 4th 6th

Why	net-baryon fluctuations?

Cumulants

P
T 4 =

1
VT 3 lnZ V ,T ,µB ,Q ,S( ) χ̂n

N=B ,S ,Q =
∂n P T 4

∂ µN T( )
n

Susceptibilities

χ̂4
B

χ̂2
B=κ 4 ΔNB( )

κ 2 ΔNB( )χ̂2
B =

κ 2 ΔNB( )
VT 3

Higher	orders	
P.	Braun-Munzinger,	A.	Rustamov,		J.	Stachel

Nuclear	Physics	A	960	(2017)	114–130

Ø At	4th order	LQCD	shows	a	deviation from	Hadron	Resonance	Gas	(HRG)	

SQM,	11.06.2019
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Effects	from	conservation	laws	

A.	Bzdak,	V.	Koch,	V.	Skokov,	PRC87	(2013)	014901	
K.	Redlich	and L.	Turko,	Z.	Phys.	C5	(1980)	201	
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Effects from conservation laws

A. Rustamov, 28.03.2019
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A. Bzdak, V. Koch, V. Skokov, PRC87 (2013) 014901
K. Redlich and L. Turko, Z. Phys. C5 (1980) 201

fluctuations of net-baryons appear only        
inside finite acceptance and impose subtle 
correlations

P.	Braun-Munzinger,	A.	Rustamov,	J.	Stachel	
NPA	982	(2019)	307-310	
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A. Rustamov, EMMI Workshop, 25-29 March, 2019, GSI.
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Centrality selection in ALICE
One of the different methods

		

Pµ ,k n( ) = Γ n+k( )
Γ n+1( )Γ k( )

µ
k

⎛
⎝⎜

⎞
⎠⎟
n

µ
k
+1⎛

⎝⎜
⎞
⎠⎟
n+k

	2.8<η <5.1 	−3.7<η < −1.7 		N = fNW + 1− f( )Ncoll

A. Rustamov, EMMI Workshop, 25-29 March, 2019, GSI.
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ALICE: Phys.Rev. C88 (2013) no.4, 044909

0-5%

ALICE:	Phys.Rev.	C88	(2013)	no.4,	044909	

5.2. Event and track selection

condition

dcaxy < 0.0182 mm +
0.0350 mm

p1.01

T

, (5.1)

which takes into account the pT-dependence of the impact parameter resolution. Moreover,
tracks are required to be present in ITS and TPC refits.

Pseudo-rapidity (⌘) range |⌘| <0.8
Momentum (p) range 0.2<p<1.5 GeV/c

Centrality classes (%)
0-5, 5-10, 10-20, 20-30, 30-40

40-50, 60-70, 70-80

DCA to vertex on xy plane < 0.0182 mm +
0.0350 mm

p1.01

T

DCA to vertex along beam direction <2 cm
TPC vertex along beam direction <10 cm

�2 per cluster <4
Number of crosseed rows is a sector >80

Found/findable TPC clusters >0.5
Fraction of shared clusters <0.4

TPC and ITS refit yes
Require hits in SPD yes

Rejection of kink daughters yes

Table 5.1.: Summary of the track selection criteria.

The classification of events in centrality intervals is obtained by fitting the summed
amplitudes of the signals in the V0A and V0C detectors with a Glauber model [79]. TheCENTRALITY DETERMINATION OF Pb-Pb COLLISIONS . . . PHYSICAL REVIEW C 88, 044909 (2013)

VZERO amplitude (arb. units) 
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FIG. 9. (Color online) Purity of the three online interaction trig-
gers (2-out-of-3, V0AND, and 3-out-of-3) and other event selections
used for Pb-Pb collisions as a function of the VZERO amplitude
calculated with HIJING, STARLIGHT, and QED simulations. The
dashed line indicates 90% of the hadronic cross section.

of the VZERO amplitude (V ), is defined as the fraction of
hadronic collisions over all the events selected with a given
condition,

purity =
dNx

dV

∣∣
H

σH

NH

dNx

dV

∣∣
H

σH

NH
+ dNx

dV

∣∣
SNS

σSNS
NSNS

+ dNx

dV

∣∣
SND

σSND
NSND

+ dNx

dV

∣∣
Q

σQ

NQ

,

(4)

where σx and Nx are the cross sections and number of events
for a given process, x, where x = H , SNS, SND, and Q,
for HIJING, STARLIGHT single, STARLIGHT double, and
QED, respectively.

The purity of the event sample can be verified using the
correlation of the energy deposition in the two sides of the ZN
calorimeter, similar to the one shown in Fig. 6. Single-neutron
peaks are visible in the 80–90% centrality class, which may
indicate some remaining contamination from EMD events.
However, their origin can be also attributed to asymmetric
Pb-Pb events, as well as a pile-up of an EMD and a hadronic
collision. Since this contamination cannot be easily removed,
analyses that use peripheral classes like 80–90% assign an
additional 6% systematic uncertainty on the event selection to
take into account the possible contamination from EMD.

B. Method 2: Fitting the multiplicity distribution

Another independent way to define the AP uses a phe-
nomenological approach based on the Glauber Monte Carlo
to fit the experimental multiplicity distribution. The Glauber
Monte Carlo uses the assumptions mentioned above plus a
convolution of a model for particle production, based on a
negative binomial distribution (NBD). This latter assumption
is motivated by the fact that in minimum bias pp and pp
collisions at high energy, the charged-particle multiplicity
dσ/dNch has been measured over a wide range of rapidity
and is well described by a NBD [31,32]. This approach allows
one to simulate an experimental multiplicity distribution (e.g.,

FIG. 10. (Color online) Distribution of the sum of amplitudes in
the VZERO scintillators. The distribution is fitted with the NBD-
Glauber fit (explained in the text), shown as a line. The centrality
classes used in the analysis are indicated in the figure. The inset
shows a zoom of the most peripheral region.

VZERO amplitude), which can be compared with the one from
data.

Figure 10 shows the distribution of VZERO amplitudes for
all events triggered with the 3-out-of-3 trigger (see Sec. III B)
after removing the beam background (see Sec. III C1), part of
the EM background with the ZDC cut (see Sec. III C2), and
a Z-vertex cut |zvtx| < 10 cm. The multiplicity distribution
has the classical shape of a peak corresponding to most
peripheral collisions (contaminated by EM background and
by missing events due to the trigger inefficiency), a plateau of
the intermediate region, and an edge for the central collisions,
which is sensitive to the intrinsic fluctuations of Npart and
dNch/dη and to detector acceptance and resolution.

The Glauber Monte Carlo defines, for an event with a
given impact parameter b, the corresponding Npart and Ncoll.
The particle multiplicity per nucleon-nucleon collision is
parametrized by a NBD. To apply this model to any collision
with a given Npart and Ncoll value we introduce the concept of
“ancestors,” i.e., independently emitting sources of particles.
We assume that the number of ancestors Nancestors can be
parameterized by Nancestors = f Npart + (1 − f )Ncoll. This is
inspired by two-component models [33,34], which decompose
nucleus-nucleus collisions into soft and hard interactions,
where the soft interactions produce particles with an average
multiplicity proportional to Npart, and the probability for hard
interactions to occur is proportional to Ncoll. We discuss
the independence of the fit results of this assumption below
(Sec. IV B1).

To generate the number of particles produced per interac-
tion, we use the negative binomial distribution

Pµ,k(n) = #(n + k)
#(n + 1)#(k)

(µ/k)n

(µ/k + 1)n+k
, (5)

which gives the probability of measuring n hits per ancestor,
where µ is the mean multiplicity per ancestor and k controls
the width. For every Glauber Monte Carlo event, the NBD
is sampled Nancestors times to obtain the averaged simulated
VZERO amplitude for this event, which is proportional to
the number of particles hitting the hodoscopes. The VZERO

044909-9

Figure 5.3.: (Black markers) Distribution of the summed amplitudes in the V0 detectors. (Red curve) the
result of the Glauber model fit to the measurement. The vertical lines separate the centrality
classes, which in total correspond to the most central 80% of the hadronic collisions [79].

model assumes that the number of particle-producing sources is given by f ⇥ Npart +
(1� f)⇥Ncoll, where Npart is the number of participating nucleons, Ncoll is the number of
binary nucleon-nucleon collisions and f quantifies their relative contributions. The number
of particles produced per interaction is generated using a Negative Binomial Distribution
(NBD) Pµ,k, which is parametrized by µ and k, where µ is the mean multiplicity per

89

6. Event-by-event Identified Particle Ratio Fluctuations

Alternatively, within the grand canonical ensemble one can define quantities which are

b[fm]
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Figure 1: Left Panel: Produced number of charged particles versus the impact parame-
ter. Right Panel: Produced number of charged particles versus the number of wounded
nucleons. For a given value of the impact parameter the number of wounded nucleons
and binary collisions are calculated with a Glauber Monte Carlo simulation based on the
approach described in [14]. Next, using a two-component model, charged particles are
produced assuming a Negative Binomial Distribution with parameters extracted by the
same procedure as used in the ALICE experiment.

Distribution (NBD), defined by the probability distribution

Pµ,k(n) =
�(n + k)

�(n + 1)�(k)

⇣µ

k

⌘n ⇣µ

k
+ 1

⌘�(n+k)

, (26)

where µ is the mean multiplicity of particles emitted from each ancestor
and k controls the width of the NBD. Numerical values of the parameters,
µ = 29.3 and k = 1.6, are taken from the ALICE paper [14].

Two-dimensional scatter plots representing the dependence on b and NW

of the produced number of charged particles are presented in the left and
the right panel of Fig. 1, respectively. The centrality classes, selected by
applying sharp cuts on the number of produced charged particles (y axis),
are represented by the dashed horizontal lines. As seen from the scatter
plots in the Fig. 1, where each dot represents one single event, the impact
parameter as well as the number of wounded nucleons fluctuate from event-
to-event, thus generating a distribution. To demonstrate this explicitly we

10

Figure 6.3.: Left Panel: Produced number of charged particles versus the impact parameter. Right
Panel: Produced number of charged particles versus the number of wounded nucleons, i.e.
number of participants. For a given value of the impact parameter the number of wounded
nucleons and binary collisions are calculated with a Glauber Monte Carlo simulation. The
corresponding centrality classes are indicated by the dashed horizontal lines [20].

free from the volume fluctuations, for instance ⌫dyn. In the model of independent sources
[86], extensive quantities1 such as the mean number of particles are considered to be pro-
portional to the number of sources, hNsi, where hNsi changes from event to event. The
multiplicities for particle types a and b can be expressed as

Na = ↵1 + ↵2 + ... + ↵Ns
, Nb = �1 + �1 + ... + �Ns

, (6.1)

where ↵k and �k denote the contributions from the kth source. One finds the first and
second moments of the multiplicity distributions as follows:

hNai = h↵ihNsi, (6.2)

hNbi = h�ihNsi, (6.3)

hN2

a i = h↵2ihNsi + h↵i2
⇥
hN2

s i � hNsi
⇤
, (6.4)

hN2

b i = h�2ihNsi + h�i2
⇥
hN2

s i � hNsi
⇤
, (6.5)

hNaNbi = h↵�ihNsi + h↵ih�i
⇥
hN2

s i � hNsi
⇤
, (6.6)

where h↵i, h�i and h↵2i, h�2i, h↵�i are the first and second moments of the probability
distributions P (↵, �) for a single source. These quantities are independent of hNsi and
play the role of intensive quantities. The details of the derivation of Eq. 6.2 – Eq. 6.6 can
be found in [87]. Here, P (↵, �) is assumed to be the same for all sources; that is, they are
statistically identical.

1Intensive quantities are physical quantities which are independent of the system volume, while exten-
sive quantities are proportional to the system volume. Accordingly, one can easily construct an intensive
quantity by taking the ratio of two extensive ones. For instance, within the grand canonical ensemble the
mean number of particles, hNi, in a relativistic gas and the variance, hN2i�hNi2 are extensive quantities,
thus the scaled variance, (hN2i � hNi2)/hNi, is an intensive one.
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volume	fluctuations	has	to	be	taken	into	account
SQM,	11.06.2019
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Figure 9: Left panel: Fourth cumulants of net-protons for Au+Au Collisions at
p
sNN =

7.7 GeV. Right panel: Ratio of fourth and second cumulants. Red points correspond to
fixed number of wounded nucleons while, for the black points, the fluctuations of wounded
nucleons are included. The centrality bin width is 2.5% for the blue points, while for the
black points variable bin widths (see Fig. 1) are used. The lines (black and blue) are
calculated using eqs. 22 and 24.

the centrality determination are not removed entirely. We note, in this con-
text, that a significant contribution to net-proton fluctuations will originate
from fluctuations of the number of net � baryons. This will introduce strong
pion-proton correlations into the sample implying that a part of the auto-
correlation problem survives, even if one excludes protons and antiprotons
from the data used for centrality determination.

Like in case of protons at
p
sNN = 2.76 TeV (see the left panel of Fig. 6),

we observe small e↵ects of the participant fluctuations for the most cen-
tral bin in Fig. 9. As explained above, this stems from the negative values of
3(NW ) and 4(NW ). However, this also depends on the mean number of par-
ticles or net-particles. To show this explicitly we present, in Figs. 10 and 11,
cumulants of net-protons for Au+Au collisions at

p
sNN=39 GeV. Mean val-

ues of protons and antiprotons are taken from [20]. For the second cumulants
of net-protons we observe quite small contributions from participant fluctu-
ations. However, for the third and fourth cumulants these contributions are
significant. Moreover, even for the most central bin 4(p � p̄)/2(p � p̄)
deviates from unity if participant fluctuations are included.

18

Ø Subdividing	a	given	centrality	bin	into	smaller	ones	and	then	merging	them	
together	incoherently.	

Ø Incoherent	addition	of	data	from	intervals	with	very	small	centrality	bin	width	
will	eliminate	true	dynamical	fluctuations.	

P.	Braun-Munzinger,	A.	Rustamov,		J.	Stachel,	
Nuclear	Physics	A	960	(2017)	114–130

Solution	for	volume	fluct :	CBWC	???

Better	publish	uncorrected	results
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What	if	the	efficiency	loss	is	not	binomial?

Ø Simulate	efficiency	loss
• Correct	with	Binomial	assumption
• Correct	with	“detector	response”
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T.	Nonaka,	M.	Kitazawa,	S.	Esumi,	Nucl.Instrum.Meth.	A906	(2018)	10-17
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FIG. 2. Cumulants of the response matrix Cm(N) for
RHG(n;N) and R�(n;N) obtained on 108 sample events with
p = 0.7 and Y = 140. The dashed lines show the analytic val-
ues, while the dotted lines represent the fitting results with
mth-order polynomial.

Cm(N) defined by

C1(N) = R1(N), C2(N) = R2(N)� (R1(N))2, (20)

and so forth, for RHG(n;N) and R�(n;N) obtained on305

108 sample events with p = 0.7 and Y = 140 for m 306

4. The dashed lines show the analytic values, while the307

dotted lines are the fitting results with the mth-order308

polynomial. From these fits one obtains the values of309

rmj .310

In Fig. 3, we show the corrected values of the cumu-311

lants hNmic for m  4 with p = 0.7 and various values of312

Y . The left (right) panel shows the results for RHG(n;N)313

(R�(n;N)). The triangles represent the results obtained314

with the analytic values of rmj , while the results obtained315

with rmj determined by the fits to Rm(N) are shown by316

squares. 107 sample events are used to obtain hhnmii in317

both analyses, while rmj in the latter analysis are ob-318

tained with 108 sample events. Errors are estimated by319

repeating the same simulation 100 times. One finds from320

the figure that the corrected cumulants hNmic are con-321

sistent with the true value, hNmic = 40 shown by the322

dashed line, within statistics for all values of Y in both323

analyses. In Fig. 3, the uncorrected cumulants, hhnmii
c
,324

are shown by filled circles. We also show the results of325

the e�ciency correction with the binomial model with326

p = 0.7 by the stars. The results in the binomial model327

fail in reproducing the true cumulants [27], in contrast to328

the new method.329

From Fig. 3 one also finds that the statistical error330

is large when rmj are determined by the fits, although331

the statistics to determine rmj is one order larger than332

that for hhnmii. This suggests that the suppression of the333

uncertainty of rmj is crucial in reducing the error of the334

final results.335

FIG. 3. Cumulants obtained by the detector-response correc-
tion, hNmi, up to the fourth order with p = 0.7 as functions
of Y for RHG(n;N) (left) and R�(n;N) (right). The results
obtained with the analytic (fitted) values of rmj are shown
by triangles (squares). The corrected values agree with the
true cumulants hNmic = 40 shown by the dashed line within
statistics. The uncorrected cumulants hhnmii

c
and the cor-

rected results in the binomial model are also shown by circles
and stars, respectively.

Finally, we note that the fitting results of Cm(N) in336

Fig. 2 have significant deviations from the analytic val-337

ues for N & 60. Nevertheless, the final results obtained338

with these fits reproduce the true values within statistics.339

This result shows that the detector-response correction is340

carried out appropriately even if the fits do not reproduce341

Rm(N) in the range of N at which P (N) is small.342

V. TEST ANALYSIS 2:343

MULTIPLICITY-DEPENDENT EFFICIENCY344

Next, we perform a test analysis of the detector-
response correction for the response matrix which cannot
be solved exactly. As such an example, we consider the
response of a detector having a multiplicity-dependent ef-
ficiency. We consider the binomial distribution but the
e�ciency is dependent on N , i.e.

RMD(n;N) = B(n; p(N), N). (21)

4

of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213

the statistics of the experimental data. When the value214

of chi-square, �2
/ndf, of these fits are close to unity with215

this statistics, there are no reasons to reject the use of216

Eq. (17). Next, the fitting results of rmj can also de-217

pend on the form of PMC(N). This suggests that one218

must check the sensitivity of the fit results on the form219

of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix
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FIG. 2. Cumulants of the response matrix Cm(N) for
RHG(n;N) and R�(n;N) obtained on 108 sample events with
p = 0.7 and Y = 140. The dashed lines show the analytic val-
ues, while the dotted lines represent the fitting results with
mth-order polynomial.

Cm(N) defined by

C1(N) = R1(N), C2(N) = R2(N)� (R1(N))2, (20)

and so forth, for RHG(n;N) and R�(n;N) obtained on305

108 sample events with p = 0.7 and Y = 140 for m 306

4. The dashed lines show the analytic values, while the307

dotted lines are the fitting results with the mth-order308

polynomial. From these fits one obtains the values of309

rmj .310

In Fig. 3, we show the corrected values of the cumu-311

lants hNmic for m  4 with p = 0.7 and various values of312

Y . The left (right) panel shows the results for RHG(n;N)313

(R�(n;N)). The triangles represent the results obtained314

with the analytic values of rmj , while the results obtained315

with rmj determined by the fits to Rm(N) are shown by316

squares. 107 sample events are used to obtain hhnmii in317

both analyses, while rmj in the latter analysis are ob-318

tained with 108 sample events. Errors are estimated by319

repeating the same simulation 100 times. One finds from320

the figure that the corrected cumulants hNmic are con-321

sistent with the true value, hNmic = 40 shown by the322

dashed line, within statistics for all values of Y in both323

analyses. In Fig. 3, the uncorrected cumulants, hhnmii
c
,324

are shown by filled circles. We also show the results of325

the e�ciency correction with the binomial model with326

p = 0.7 by the stars. The results in the binomial model327

fail in reproducing the true cumulants [27], in contrast to328

the new method.329

From Fig. 3 one also finds that the statistical error330

is large when rmj are determined by the fits, although331

the statistics to determine rmj is one order larger than332

that for hhnmii. This suggests that the suppression of the333

uncertainty of rmj is crucial in reducing the error of the334

final results.335

FIG. 3. Cumulants obtained by the detector-response correc-
tion, hNmi, up to the fourth order with p = 0.7 as functions
of Y for RHG(n;N) (left) and R�(n;N) (right). The results
obtained with the analytic (fitted) values of rmj are shown
by triangles (squares). The corrected values agree with the
true cumulants hNmic = 40 shown by the dashed line within
statistics. The uncorrected cumulants hhnmii

c
and the cor-

rected results in the binomial model are also shown by circles
and stars, respectively.

Finally, we note that the fitting results of Cm(N) in336

Fig. 2 have significant deviations from the analytic val-337

ues for N & 60. Nevertheless, the final results obtained338

with these fits reproduce the true values within statistics.339

This result shows that the detector-response correction is340

carried out appropriately even if the fits do not reproduce341

Rm(N) in the range of N at which P (N) is small.342

V. TEST ANALYSIS 2:343

MULTIPLICITY-DEPENDENT EFFICIENCY344

Next, we perform a test analysis of the detector-
response correction for the response matrix which cannot
be solved exactly. As such an example, we consider the
response of a detector having a multiplicity-dependent ef-
ficiency. We consider the binomial distribution but the
e�ciency is dependent on N , i.e.

RMD(n;N) = B(n; p(N), N). (21)

Ø Produce	sample	events of	N	assuming	
the	Poisson	distribution	
(N=number	of	particles	in	a	given	event)

Ø Model	the	efficiency	loss	with	

4

of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213
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of chi-square, �2
/ndf, of these fits are close to unity with215
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of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix
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in general in this case. Second, even if the inverse ma-148

trix were obtained, Eq. (9) requires hhnmii up to infinitely149

higher orders. In realistic situations, however, the mo-150

ments hhnmii accessible with a reasonable statistics are151

limited typically to m . 6.152

When the expansions Eq. (6) are terminated at finite
orders, Eq. (9) gives a closed form and provides exact for-
mulas for the detector-response correction. Particularly
important examples of R(n;N) satisfying this condition
are the cases that Rm(N) is given by a mth-order poly-
nomial, i.e.

Rm(N) =
mX

j=0

rmjN
j
. (10)

In this case, the matrix R in Eq. (8) has a lower-
triangular form

R =

2

66664

r11 0 0 · · ·
r21 r22 0 · · ·

r31 r32 r33
. . .

...
...

. . .

3

77775
. (11)

The inverse of a lower-triangular matrix is obtained153

order-by-order, and R�1 is also lower triangular. Sub-154

stituting the lower-triangular form of R�1 into Eq. (9),155

one finds that hNmi depends only on hhnlii for l  m.156

The binomial model with Rbin(n;N) = B(n; p,N) [1],
with the binomial distribution

B(n; p,N) = p
n(1� p)N�n N !

n!(N � n)!
(12)

corresponds to this case. In fact, all the cumulants of the
binomial distribution is proportional to N ,

hnmic,binomial = ⇠m(p)N, (13)

where the coe�cients ⇠m(p) depend only on p [24]. Con-157

verting Eq. (13) into moments, one immediately finds158

that Rm(N) in this case is given by a mth-order poly-159

nomial as in Eq. (10). In this case, Eq. (9) reproduces160

the formulas of the e�ciency correction in the binomial161

model [1].162

Other examples satisfying Eq. (10) are the binomial
model but the probability p is fluctuating event by
event [31],

RG(n;N) =

Z
1

0

dpG(p)B(n; p,N), (14)

where G(p) is a probability distribution satisfying163 R
1

0
dpG(p) = 1. The moments Rm(N) of Eq. (14) satisfy164

Eq. (10) for arbitrary forms of G(p), as discussed in Ap-165

pendix C. The detector-response correction for RG(n;N)166

thus is handled with Eq. (9) exactly. The beta-binomial167

distribution, which is obtained by G(p) = B(p; a, b) with168

the beta distribution B(p; a, b), belongs to this case (see169

Appendix D).170

Another interesting response matrix is the one
parametrized by the hypergeometric distribution as

RHG(n;N) = H(n;N,X, Y ), (15)

where the hypergeometric distribution H(n;N,X, Y ) is171

defined in Appendix D. As shown in Appendix D, the172

moments of Eq. (15) is given in the form in Eq. (10).173

Therefore, the detector-response correction for Eq. (15)174

is also carried out exactly with Eq. (9).175

E. Truncation176

When the expansion of Rm(N) is not closed, one must
introduce an approximation to deal with the detector-
response correction. A simple approximation is a trunca-
tion of the expansion Eq. (6) at Lth order,

Rm(N) =
LX

j=0

rmjN
j
. (16)

Using Eq. (16), one obtains a closed formula up to the
Lth order

2

6664

hhnii
hhn2ii
...

hhnLii

3

7775
=

2

6664

r10

r20

...
rL0

3

7775
+R

2

6664

hNi
hN2i
...

hNLi

3

7775
, (17)

where R is a L⇥L matrix. When R is a regular matrix,177

by applying R�1 from left Eq. (17) enables one to carry178

out the detector-response correction up to the Lth order179

using the experimental data on hhnmii for m  L.180

Of course, this analysis can be justified only when the181

truncated formula Eq. (16) well reproduces the functional182

form of Rm(N). When R(n;N) is given by an analytic183

form, the e↵ect of the truncation would be estimated an-184

alytically. When one considers the response matrices of185

realistic detectors, they are usually estimated by Monte186

Carlo simulations such as GEANT [32], which provide187

the moments Rm(N) with statistical errors. In this case,188

one may perform fits to Rm(N) with Eq. (16). The use of189

Eq. (17) would be justified as long as these fits reproduce190

Rm(N) within statistics. The detector-response correc-191

tion of realistic detectors will be discussed in Sec. III in192

more detail.193

III. PRACTICAL ANALYSIS194

In this section, we discuss the detector-response correc-195

tion of realistic detectors whose response matrix R(n;N)196

are not given by an analytic form. In the following, we197

consider the use of the approximation with the truncation198

discussed in Sec. II E.199

The form of R(n;N) of realistic detectors is usually es-200

timated by Monte Carlo simulations such as GEANT [32].201

The simulations provide the moments Rm(N) with statis-202

tical errors. In this case, the coe�cients rmj in Eq. (16)203

are determined by the fits to Rm(N) obtained by the sim-204

ulation. Using rmj thus obtained, the correction can be205

carried out with Eq. (17).206

Because we do not know the true distribution of N in207

realistic situations, in the Monte Carlo simulations one208

may assume a presumed “true” distribution PMC(N). A209

problem here is that the quality and result of the fits to210

Rm(N) depend on the form of PMC(N) and the number211
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