Study of Jet Fragmentation in J/ψ and D mesons with CMS

Xiao Wang for the CMS collaboration

the 18th International Conference on Strangeness in Quark Matter (SQM2019) 10-15 June, 2019, Bari (Italy)

Introduction

Jets are established tomographic probes for QGP. We know that:

 Jets are quenched and jet fragmentation functions and shapes are modified in heavy ion collisions

Introduction

Jets are established tomographic probes for QGP. We know that:

 Jets are quenched and jet fragmentation functions and shapes are modified in heavy ion collisions

We are now advancing these studies into heavy flavor sector

Studies of J/ψ , D⁰ in jets

In pp collisions:

- Explore heavy flavor parton coupling to QGP
- Probe medium response to heavy flavor probes

J/ψ in jets: analysis strategy

- Find J/ψ candidates in jet cones
- Perform 2D fitting to extract prompt/non prompt J/ψ fractions

2.6

2.7

2.8

2.9

 $m_{\mu^{*}\mu^{-}}\left(\text{GeV}\right)$

3.3

Jet fragmentation function for J/ψ

Non-prompt J/ ψ in Jets as function of z

Prompt J/ ψ in Jets as function of z

CMS-PAS-HIN-18-012

• Prompt J/ ψ yield in jets: at odds with PYTHIA predictions

Fraction of J/ψ produced within a jet

• Prompt and non-prompt J/ ψ production in jets is underpredicted by PYTHIA

D⁰ meson analysis strategy

- 1. Find D meson candidates within the jet cones
- 2. Subtract D-jet background via event mixing (critical to HI!)
- 3. Apply corrections for detector effects

Results: the D⁰ in jets

CMS-HIN-18-007

• Radial distribution of D^0 in jets from pp collisions is captured by PYTHIA simulation. Possible tensions at lower p_T .

Results: the D⁰ in jets

First measurement of D⁰ production in jets at the LHC:

- High p_T: consistent with vacuum reference
- Low p_T : a hint of a shift away from the jet axis?

Summary

 J/ψ + jets in pp:

- charm production in jet needs further investigation
- both charm and bottom in jets are underpredicted by PYTHIA

First measurement of D + jets in pp and PbPb collisions:

new prospects for studies of heavy flavor in QGP

Tons of data on tape (2017/2018 run) we'll work on going deeper!

The UIC group's work was supported by US DOE-NP

Summary

 J/ψ + jets in pp:

- charm production in jet needs further investigation
- both charm and bottom in jets are underpredicted by PYTHIA
- First measurement of D + jets in pp and PbPb collisions:
 - new prospects for studies of heavy flavor in QGP

Tons of data on tape (2017/2018 run) we'll work on going deeper!

The UIC group's work was supported by US DOE-NP

Event mixing technique

CMS

D⁰ and jets reconstruction and selections

CMS-PAS-HIN-16-016

D⁰ and jets reconstruction and selections

• Jet-triggered events in pp (27.4 pb⁻¹) and PbPb (404 μ b⁻¹) collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ collected in 2015 with the CMS detector

 $\bullet \quad D^0 \to K\pi$

- D⁰ vertex reconstruction
 - pairing two tracks
 - kinematic fitter
- Topological selections
 - Pointing angle (α) < ~0.04
 - 3D decay length (d₀) normalized by its error > ~3
 - Secondary vertex prob > ~0.05
- ly^Dl < 2
- Two p_T bins
 - 4 < p_T^D < 20 GeV
 - p_T^D > 20 GeV

Background subtraction

 Signal = Raw - Background
Background contributions are much smaller than signal

Results: the D meson in jets

High p_T : consistent with the vacuum reference;

Low p_T : a hint that D mesons are pushed away from the jet axis.

Constraint on the diffusion effect and multi-scattering.

arxiv:1906.01499

