

Low Mass Dielectrons in pp, p-Pb and Pb-Pb Collisions with ALICE

Aaron Capon, on behalf of ALICE Stefan Meyer Institute for Subatomic Physics, Vienna

Strange Quark Matter | 11.06.2019 | Aaron Capon

Dielectrons as Probes of the QGP

- Many sources of dielectrons created during the course of the collision
 - \rightarrow dielectron spectrum contains the whole "history" of the collision
- Photons and leptons experience no strong • interactions and can therefore probe the inner regions of collisions unperturbed
 - \rightarrow medium is transparent to dielectrons

Earlier production time

Dielectron Mass Spectrum

Low Mass Region

- $m_{ee} < 1.1 \, \text{GeV}/c^2$
- Populated with light neutral mesons
 - π^{o} , η , η' , ρ , ω and ϕ
- Decaying via Dalitz, or two body decays

- Potentially sensitive to chiral symmetry restoration which is predicted at the high temperatures reached in heavy ion collisions
 - broadening of ρ observed at SPS and RHIC
 → measure at LHC: μ_B=0
- Thermal radiation via measurement of quasi-real photons

Earlier production time

Dielectron Mass Spectrum

Intermediate Mass Region (IMR)

- $1.1 < m_{ee} < 2.5 \text{ GeV}/c^2$
- Dominated by decays of correlated "open heavy flavour"

 cc and bb pairs created during the collision can form a bound state with a lighter quark and then decay semi-leptonically (cc - > DD → XY e⁺e⁻)

• Measure/investigate:

• σ_{cc,bb}

- Nuclear parton distribution functions (PDF's) in p-Pb and Pb-Pb
- Sensitive to production mechanisms in pp
- Thermal radiation from the partonic phase
- Photo-production: $\gamma\gamma
 ightarrow e^+e^-$

Earlier production time

ALICE's Results Overview

Aaron Capon | ALICE | Strange Quark Matter, 2019

Dielectron Invariant Mass in pp

- Dielectron mass spectra in pp act as baseline for measurements in p-Pb and Pb-Pb
- Compare spectrum to cocktail of known hadronic sources
- Cocktail at $\sqrt{s} = 7$ TeV comprised of:
 - $\pi^{\pm}(for \pi^{o}), \eta, \phi, J/\psi$: measurements used for input
 - $\eta': m_{\tau}$ scaling
 - ω & ρ: ω/π[±] and ρ/π± ratios from PYTHIA 8 Monash 2013 tune and measurements in pp at √s = 7 TeV
 - cc and bb: PYTHIA 6 Perguia 2011 tune scaled to measured $\sigma_{c\overline{c},b\overline{b}}$
- Data well described by cocktail within uncertainties
 - \rightarrow baseline measurement well understood

Dielectron Invariant Mass in pp $\sqrt{s} = 13 \text{ TeV}$

- Dielectron mass spectra in pp act as baseline for measurements in p-Pb and Pb-Pb
- Compare spectrum to cocktail of known hadronic sources
- Cocktail at $\sqrt{s} = 13$ TeV comprised of:
 - $\pi^{\pm}(\text{for }\pi^{o})$: via scaling by the $\pi^{\pm}/\text{hadrons}^{\pm}$ ratio from measurement at $\sqrt{s} = 7$ TeV
 - η : measured η/π^{o} ratio at 7 TeV
 - $\eta' \& \phi : m_{\tau}$ scaling
 - $\omega \& \rho$: ω/π^{\pm} and ρ/π^{\pm} ratios from PYTHIA 8 Monash 2013 tune
 - cc and bb: PYTHIA 6 Perguia 2011 tune scaled to $d\sigma_{cc,bb}/dy|_{y=0}$ scaled with FONLL from $\sqrt{s} = 7$ TeV measurement
- Data well described by cocktail within uncertainties
 - \rightarrow baseline measurement well understood

DCA Studies in pp

- Observable → DCA = Distance of Closest Approach
 normalised to track resolution
- Useful variable to separate prompt from non-prompt dielectron sources

DCA_{ee}(prompt) < DCA_{ee}(charm) < DCA_{ee}(beauty)

DCA Studies in pp

- Observable → DCA = Distance of Closest Approach
 normalised to track resolution
- Useful variable to separate prompt from non-prompt dielectron sources

DCA_{ee}(prompt) < DCA_{ee}(charm) < DCA_{ee}(beauty)

 No evidence of prompt sources in pp – as expected in IMR

HF Cross Sections in pp

- Both DCA_{ee} and m_{ee}/p_{T,ee} fit methods in agreement
- Dominant systematic uncertainty coming from $c\overline{c} \rightarrow ee$ branching ratio (±22%)
- PYTHIA fits in agreement with independent measurements using single HF hadrons
- Discrepancy between PYTHIA and POWHEG $c\bar{c}$ and $b\bar{b}$ results
 - \rightarrow Sensitive to production mechanisms from Monte Carlo generators

Dielectron Invariant Mass in PbPb

- Run 2 data from 2015
 - Higher collision energy than Run 1
 → Phys. Rev. C 99, (2019) 024002
 - Acceptance increase due to lowered p_{T} cut 0.4 GeV/ $c \rightarrow 0.2$ GeV/c

- Data consistent with an enhancement in the low mass region (0.14 < m_{ee} < 0.7 GeV/c²)
 - Statistics too low to address spectral shape changes
 - Awaiting analysis of 2018 data

 → ~10× more events (0-10% centrality)

Photo-Production in Hadronic AA

 $\gamma\gamma
ightarrow e^+e^-$

- Photo-production scales with Z⁴
- Coherent scattering \rightarrow peak at low- $p_{T,ee}$
- Relative contributions from photo-production expected to be smaller in central collisions compared to peripheral collisions
- Recently photo-production in peripheral collisions measured by STAR

Photo-Production in Hadronic AA ALICE

- Run 2 data from 2015
- 1.1 < m_{ee} < 2.7 GeV/ $c^2 \rightarrow$ HF dominated region
- MVA employed to suppress combinatorial background from electrons originating from photon conversions
- No significant discrepancy in O 40% centrality

Photo-Production in Hadronic AA ALICE

- Run 2 data from 2015
- 1.1 < m_{ee} < 2.7 GeV/ $c^2 \rightarrow$ HF dominated region
- MVA employed to suppress combinatorial background from electrons originating from photon conversions
- 3.60 excess observed in 70 -90% centrality
 - Relative excess smaller than observed by STAR

Dielectron Production in Small Systems

- Study heavy-ion like phenomena in high multiplicity pp and p-Pb collisions with dielectrons
 - Production of ρ, thermal radiation, etc...?
- Study with dielectrons

Observable: $\frac{N_{ee}(HM)/dN_{ch}/d\eta(HM)}{N_{ee}(INEL)/\langle dN_{ch}/d\eta(INEL) \rangle}$

- High multiplicity (HM) trigger selected 0.036% of events in pp
- Cocktail takes into account the following modifications:
 - Hardening of hadronic p_τ spectrum
 → assume same for LF hadrons at same m_τ
 - D and J/ψ scale faster than multiplicity

 → assume same enhancement for open beauty as for
 open charm
- No excess observed in ρ dominated region
- Beauty assumption confirmed in high p_{T} IMR

Aaron Capon | ALICE | Strange Quark Matter, 2019

Summary and Outlook

pp: \sqrt{s} = 7 TeV and \sqrt{s} = 13 TeV

- Baseline m_{ee}/p_{T,ee} and DCA_{ee} measurements well understood
- Complementary measurements of $\sigma_{c\overline{c,b}\overline{b}}$

p-Pb: $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV

- Both DCA_{ee} and m_{ee}/p_{T,e} multiplicity dependant analyses under way using run 2 data
 - Utilising MVA for ePID

Pb-Pb: $\sqrt{s_{NN}}$ = 2.76 TeV and $\sqrt{s_{NN}}$ = 5.02 TeV

- $m_{_{\rm ee}}/p_{_{\rm T,ee}}$ measurements statistics limited
 - ~10× more data obtained in 2018 (0-10% centrality)
 - Promising outlook for Run 3
 - → Talk at SQM: "Physics with the detector upgrades at LHC" By M. Weber, Friday, 17:00
- Photo-production observed, 3.6σ, in 70-90% centrality

Backup slides

Dielectron Invariant Mass in PbPb

- Run 2 data from 2015
 - Higher collision energy than Run 1

 → Phys. Rev. C 99, (2019) 024002
 - Acceptance increase due to lowered p_{T} cut 0.4 GeV/ $c \rightarrow 0.2$ GeV/c

- Potential suppression in the intermediate mass region (1.1 < m_e < 2.5 GeV/c²)
 - 1.67σ effect
 - If including cold nuclear matter effects (EPPS16)
 - 0.410 effect

Dielectron Invariant Mass in PbPb

- Run 2 data from 2015
 - Higher collision energy than Run 1

 → Phys. Rev. C 99, (2019) 024002
 - Acceptance increase due to lowered p_{T} cut 0.4 GeV/ $c \rightarrow 0.2$ GeV/c

- Potential suppression in the intermediate mass region (1.1 < m_m < 2.5 GeV/c²)
 - 1.67σ effect
 - If including cold nuclear matter effects (EPPS16)
 - 0.410 effect

- Major TPC and ITS upgrades
- Dielectron Future
 - Modified rho meson spectral function with uncertainty of ~15%
 - Extract temperature at m_{ee} > 1 GeV/ c^2 with uncertainty of ~20%

Aaron Capon | ALICE | Strange Quark Matter, 2019

DCA in p-Pb

- DCA studies also under way for Run 2 pPb data
- Investigate effects of cold nuclear matter on heavy flavour production

Heavy Flavour Production

g 00000

- Concept: investigate different charm production processes using PYTHIA6 simulations
- Default production fractions:
 - Gluon splitting (GSP): 55%
 - Flavour excitation (FEX): 20%
 - Flavour creation (FCR): 10 %

g 20000

QCD & Heavy Ion Collisions

Aaron Capon | ALICE | Strange Quark Matter, 2019

Small Systems

- Small systems used as reference measurements
 - \rightarrow pp and p-Pb collisions
- However, high multiplicity events in pp and p-Pb exhibit collective behaviour
 → Creation of Hot Dense Matter?

What signals can we look for?

- Final spectrum can be compared to "cocktail" of known hadronic sources*
 - \rightarrow in-medium meson modifications?
 - \rightarrow thermal photons?

*Known sources, as measured in p-Pb, or from pp and up scaled by number of participants

Chiral Symmetry

26

Chiral Symmetry Restoration

0^{II}

Dropping Masses ?

- Mechanism for restoration? •
- Two main ideas: •
 - \rightarrow dropping masses

MVA ePID

Particle Identification

Aaron Capon | ALICE | Strange Quark Matter, 2019

Classifier Training

Aaron Capon | ALICE | Strange Quark Matter, 2019

ePID Results

• Cut on classifier output via maximisation of $\rightarrow significance(PID) = \frac{signal}{\sqrt{signal + background}}$

Purity: 97%, Efficiency: 95%

Dielectron Analysis

Obtaining the Spectrum

- Track quality cuts applied to ensure only "good" quality tracks are used
 - ->chi²/n.d.f in each detector etc
- Electron particle identification performed
- Real photons decaying into electrons need to be removed
 - → conversion rejection cuts

 $LS_{all} = R \cdot \sqrt{N}$

• Obtain spectrum via like-sign subtraction

 $US_{signal} = US_{all} - LS_{all}$

Additional factor needed during like-sign subtraction to account for different acceptances between ++/-- and +- tracks. Currently not implemented.

Background Subtraction

- For the final spectrum each positive and negative track, within each event, are paired together. These are labelled as the same event unlike-sign spectrum, N^{same}, and contains not only the real dielectron pairs, but also many pairs which are merely combinatorial.
- The combinatorial background is calculated via the geometric mean (arithmetic if empty bins) of the like-sign pair spectra within the same event, B.

$$B = 2 \cdot \sqrt{N_{+-}^{same} \cdot N_{--}^{same}}$$

• The difference in acceptance between unlike and like-sign pairs is calculated with the acceptance factor, R, which uses event mixing to remove an correlations between pairs:

$$R = \frac{N_{+-}^{mixed}}{2 \cdot \sqrt{N_{++}^{mixed} \cdot N_{--}^{mixed}}}$$

• The final raw spectrum is then determined with:

$$signal = N_{+-}^{same} - R \cdot B$$

Low-mass Thermal Radiation

A Large Ion Collider Experiment

Thermal Radiation

• Thermal radiation can be directly related to the temperature via

$$dN/dp_T \propto \exp\left(-\alpha \frac{p_T}{T}\right)$$

• However, photon measurements contain doppler and flow effects due to expanding medium

Aaron Capon | ALICE | Strange Quark Matter, 2019

Direct Photon Measurement

Positron

Pb ions

Electron

Light

Key QGP signature

• Need to extract direct photons from inclusive photons

direct: all photons not from hadron decays inclusive: all photons

• Relationship between yield of virtual photons and dielectron yield given by Kroll-Wada:

Aaron Capon | ALICE | Strange Quark Matter, 2019

 $(1-r)^* f_{\text{cocktail}} + r^* f_{\gamma,\text{dir}}$

--- ŋ

0.4

 m_{ee} (GeV/ c^2)

0.5

cocktail sum

🔶 data

f_{γ,dir}

Direct Photon Measurement

10

ALICE preliminary

 $2.4 < p_{\tau}^{ee} < 3.2 \text{ GeV}/c$

pp, √s=7 TeV

p^e₋>0.2 GeV/c η^e|<0.8

 $\frac{d^2\sigma}{dm_{ee}dp_T} (mb/ \text{GeV/}c^2)$

10⁻³

- Key QGP signature •
 - \rightarrow thermally radiated photons
- Need to extract direct photons from inclusive • photons

direct: all photons not from hadron decays inclusive: all photons

Relationship between yield of virtual photons • and dielectron yield given by Kroll-Wada:

Aaron Capon | ALICE | Strange Quark Matter, 2019

Extracting Direct Photons

[1] M. Wilde (for the ALICE Collaboration), arXiv:1210.5958 [hep-ex] (2012)