Hyperons in thermal QCD

FASTSUM Collaboration

Gert Aarts, Chris Allton, Sergio Chaves, Davide de Boni, Jonas Glesaaen, Simon Hands, Alan Kirby, Aleksandr Nikolaev, Sam Offler, Chrisanthi Praki Swansea University

Benjamin Jäger
Southern Denmark University
Seyong Kim
Sejong University, Korea
Maria Paola Lombardo
INFN, Florence
Sinead Ryan
Trinity College, Dublin
Jon-Ivar Skullerud
National University of Ireland, Maynooth, Ireland
Liang-Kai Wu
Jiangsu University, China

Overview

- Baryons in medium: rarely studied!
- FASTSUM approach
- Anisotropy
- New, lighter ensemble + finer ensemble
- Hyperons at non-zero T
- Hadron Resonance Gas (for "warm" baryons)
- Parity doubling (for "hot" baryons)
- Other FASTSUM Results
- Bottomonium
- Conductivity
- Dense matter mesons
- Conclusions

Baryons in a medium

Previous Work:

Lattice studies of baryons at finite temperature very limited, (all quenched)

- \quad screening masses De Tar and Kogut 1987
- with a small chemical potential QCD-TARO: Pushkina, de Forcrand, Kim, Nakamura, Stamatescu et al 2005
- temporal correlators Datta, Gupta, Mathur et al 2013

Effective models, mostly at T ~ 0 and nuclear density \Rightarrow parity doubling models
De Tar \& Kunihiro 89 Mukherjee, Schramm, Steinheimer \& Dexheimer, Sasaki 2017
Our Work:
PRD 92 (2015) 014503 [arXiv:1502.03603]
JHEP 06 (2017) 034 [arXiv:1703.09246]
Phys.Rev. D99 (2019) no.7, 074503 [arXiv:1812.07393]

Parity

No parity doubling in $(\mathrm{T}=0)$ Nature:

$$
\begin{array}{ll}
\text { +ve parity: } & m_{+}=m_{N}=0.939 \mathrm{GeV} \\
\text {-ve parity: } & m_{-}=m_{N^{*}}=1.535 \mathrm{GeV}
\end{array}
$$

Question: What happens as T increases?

Lattice:

Parity operation:

$$
P \mathscr{O}(\tau, \vec{x}) P^{-1}=\gamma_{4} \mathscr{O}(\tau,-\vec{x})
$$

Construct correlation functions:

$$
G_{ \pm}(\tau)=\int \mathrm{d} \mathbf{x}\left\langle\operatorname{tr} O(\mathbf{x}, \tau) P_{ \pm} \bar{O}(\mathbf{0}, 0)\right\rangle, \quad P_{ \pm}=\frac{1}{2}\left(\mathbb{1} \pm \gamma_{4}\right)
$$

Symmetries

Charge conjugation (at zero density):

$$
G_{ \pm}(\tau)=-G_{\mp}(1 / T-\tau) \quad(*)
$$

i.e. positive/negative parity states propagate forward/backward in τ

Eg. for a single state:

$$
G_{+}(\tau)=A_{+} e^{-m_{+} \tau}+A_{-} e^{-m_{-}(1 / T-\tau)}
$$

(Contrasts with meson sector)

Chiral symmetry:

Constrains spinor structure so that $G_{+}(\tau)=-G_{-}(\tau) \quad$ ie. parity doubling: $\mathrm{m}_{+}=\mathrm{m}-$
Together with (*) $\longrightarrow G_{+}(\tau)=G_{+}(1 / T-\tau)$ i.e. forward/back symmetry

Question: Does this happen in Nature in deconfined phase?

- assuming $\mathrm{m}_{\mathrm{q}} \sim 0$
- what about the strange-quark sector

Nucleon Correlators

Nucleon: $\quad O_{N}^{\alpha}(x)=\epsilon_{a b c} u_{a}^{\alpha}(x)\left(d_{b}^{T}(x) C Y_{n} u_{c}(x)\right)$

$$
\text { Different Operator Choices: } \quad Y_{4}=\gamma_{5}, Y_{5}=\gamma_{4} \gamma_{5} \text { and } Y_{6}=\frac{1}{2}\left(Y_{4}+Y_{5}\right)
$$

Delta: $\quad O_{\Delta, i}^{\alpha}(x)=\epsilon_{a b c}\left[2 u_{a}^{\alpha}(x)\left(d_{b}^{T}(x) C \gamma_{i} u_{c}(x)\right)+d_{a}^{\alpha}(x)\left(u_{b}^{T}(x) C \gamma_{i} u_{c}(x)\right)\right]$
Omega: $\quad O_{\Omega, i}^{\alpha}(x)=\epsilon_{a b c} s_{a}^{\alpha}(x)\left(s_{b}^{T}(x) C \gamma_{i} s_{c}(x)\right)$

$$
G_{ \pm}(\tau)=\int \mathrm{d} \mathbf{x}\left\langle\operatorname{tr} O(\mathbf{x}, \tau) P_{ \pm} \bar{O}(\mathbf{0}, 0)\right\rangle, \quad P_{ \pm}=\frac{1}{2}\left(\mathbb{1} \pm \gamma_{4}\right)
$$

Baryons

Spin 1/2 octet

Spin 3/2 decuplet

Baryons: No isospin

Spin 1/2 octet

Spin 3/2 decuplet

Lattice Parameters - Generation 2

(2+1) flavour
Quark Mass: $\quad \mathrm{M}_{\pi}=392(4) \mathrm{MeV}$
Lattice Spacing: $a_{s}=0.123 \mathrm{fm}$
Anisotropy: $\quad a_{s} / a_{t}=5.6$
Spatial Volume: $(3 \mathrm{fm})^{3}-(4 \mathrm{fm})^{3}$

$$
\begin{aligned}
& \longrightarrow \tau \\
& T=1 / L_{\tau} \\
& =1 /\left(a_{\tau} N_{\tau}\right)
\end{aligned}
$$

N_{s}	N_{τ}	$T[\mathrm{MeV}]$	T / T_{c}	N_{src}	N_{cfg}
24	128	44	0.24	16	139
24	40	141	0.76	4	501
24	36	156	0.84	4	501
24	32	176	0.95	2	1000
24	28	201	1.09	2	1001
24	24	235	1.27	2	1001
24	20	281	1.52	2	1000
24	16	352	1.90	2	1001

Lattice Parameters - Generation 2

(2+1) flavour
Quark Mass: $\quad \mathrm{M}_{\pi}=392(4) \mathrm{MeV}$
Lattice Spacing: $\mathrm{a}_{\mathrm{s}}=0.123 \mathrm{fm}$
Anisotropy: $\quad a_{s} / a_{t}=5.6$
Spatial Volume: $(3 f m)^{3}-(4 f m)^{3}$

N_{s}	N_{τ}	$T[\mathrm{MeV}]$	T / T_{c}	$N_{\text {src }}$	$N_{\text {cfg }}$
24	128	44	0.24	16	139
24	40	141	0.76	4	501
24	36	156	0.84	4	501
24	32	176	0.95	2	1000
24	28	201	1.09	2	1001
24	24	235	1.27	2	1001
24	20	281	1.52	2	1000
24	16	352	1.90	2	1001

Lattice Parameters - Generation 2

Lattice Parameters - Generation 2

Lattice Parameters

Lattice Parameters

Generation 2 results

Lattice Nucleon Correlator: G+

+ve
parity
-ve
parity

Lattice Nucleon Correlator: G+

+ve
parity

$\tau T=\frac{\tau / a_{\tau}}{N_{\tau}}$

Raw Correlators

Delta cf Nucleon

$$
G_{+}(\tau)=? A_{+} e^{-m_{+} \tau}+A_{-} e^{-m_{-}(1 / T-\tau)}
$$

$$
R(\tau)=\frac{G_{+}(\tau)-G_{+}(1 / T-\tau)}{G_{+}(\tau)+G_{+}(1 / T-\tau)} \quad \begin{array}{ll}
R(\tau) \sim 0 \longrightarrow \text { parity doubling } \\
R(\tau) \sim 1 \longrightarrow \text { parity max broken }
\end{array}
$$

$\mathrm{T} / \mathrm{T}_{\mathrm{c}}=0.76$

$\mathrm{T} / \mathrm{Tc}=1.90$

$$
R \equiv \frac{\sum_{n=1}^{N_{\tau} / 2-1} R\left(\tau_{n}\right) / \sigma^{2}\left(\tau_{n}\right)}{\sum_{n=1}^{N_{\tau} / 2-1} 1 / \sigma^{2}\left(\tau_{n}\right)}
$$

- Cross-over occurs $\sim T_{c}$
- effect of heavier s-quark visible

Point of Inflection versus T_{c}

Masses from exponential fits (confined phase)

$$
G(\tau)=A_{+} e^{-M_{+} \tau}+A_{-} e^{-M_{-} \tau}
$$

S		$I\left(J^{P}\right)$	$T / T_{c}=0.24$	0.76	0.84	0.95	PDG
0	N	$\frac{1}{2}\left(\frac{1}{2}{ }^{+}\right)$	1159(13)	1192(39)	1169(53)	1104(40)	939
	N	$\frac{1}{2}\left(\frac{1}{2}{ }^{-}\right)$	1778(52)	1628(104)	1425(94)	1348(83)	1535
	Δ	$\frac{3}{2}\left(\frac{3}{2}+\right.$	1459(58)	1521(43)	1449(42)	1377(37)	1232
		$\frac{3}{2}\left(\frac{3}{2}-\right)$	2138(117)	1898(106)	1734(97)	1526(74)	1710
-1	Σ	$1\left(\frac{1}{2}^{+}\right)$	1277(13)	1330(38)	1290(44)	1230(33)	1193
		$1\left(\frac{1}{2}^{-}\right)$	1823(35)	1772(91)	1552(65)	1431(51)	1750
	Λ	$0\left(\frac{1}{2}^{+}\right)$	1248(12)	1293(39)	1256(54)	1208(26)	1116
		$0\left(\frac{1}{2}^{-}\right)$	1899(66)	1676(136)	1411(90)	1286(75)	1405-1670
	$\Sigma *$	$1\left(\frac{3}{2}^{+}\right)$	1526(32)	1588(40)	1536(43)	1455(35)	1385
		$1\left(\frac{3}{2}^{-}\right)$	2131(62)	1974(122)	1772(103)	1542(60)	1670-1940
-2	Ξ	$\frac{1}{2}\left(\frac{1}{2}{ }^{+}\right)$	1355(9)	1401(36)	1359(41)	1310(32)	1318
		$\frac{1}{2}\left(\frac{1}{2}{ }^{-}\right)$	1917(27)	1808(92)	1558(76)	1415(50)	1690-1950
	Ξ^{*}	$\frac{1}{2}\left(\frac{3}{2}+\right)$	1594(24)	1656(35)	1606(40)	1526(29)	1530
		$\frac{1}{2}\left(\frac{3}{2}-\right)$	2164(42)	2034(95)	1810(77)	1578(48)	1820
-3	Ω	$0\left(\frac{3}{2}+\right)$	1661(21)	1723(32)	1685(37)	1606(43)	1672
		$0\left(\frac{3}{2}^{-}\right)$	2193(30)	2092(91)	1863(76)	1576(66)	2250

Masses from exponential fits (confined phase)

$$
G(\tau)=A_{+} e^{-M_{+} \tau}+A_{-} e^{-M_{-} \tau}
$$

S		$I\left(J^{P}\right)$	$T / T_{c}=0.24$	0.76	0.84	0.95	PDG
0	N	$\frac{1}{2}\left(\frac{1}{2}{ }^{+}\right)$	1159(13)	1192(39)	1169(53)	1104(40)	9394
	Δ	$\frac{1}{2}$	$11978(52)$	1628(104)	1425(94)	1348(83)	1535
		$\frac{3}{2}\left(\frac{3}{2}+\right)$	1459(58)	1521(43)	1449(42)	1377(37)	1232
		$\frac{3}{2}\left(\frac{3}{2}-\right)$	2138(117)	1898(106)	1734(97)	1526(74)	1710
-1	Σ	$1\left(\frac{1}{2}^{+}\right)$	1277(13)	1330(38)	1290(44)	1230(33)	1193
		$1\left(\frac{1}{2}^{-}\right)$	1823(35)	1772(91)	1552(65)	1431(51)	1750
	Λ	$0\left(\frac{1}{2}^{+}\right)$	1248(12)	1293(39)	1256(54)	1208(26)	1116
		$0\left(\frac{1}{2}^{-}\right)$	1899(66)	1676(136)	1411(90)	1286(75)	1405-1670
	Σ^{*}	$1\left(\frac{3}{2}^{+}\right)$	1526(32)	1588(40)	1536(43)	1455(35)	1385
		$1\left(\frac{3}{2}^{-}\right)$	2131(62)	1974(122)	1772(103)	1542(60)	1670-1940
-2	Ξ	$\frac{1}{2}\left(\frac{1}{2}{ }^{+}\right)$	1355(9)	1401(36)	1359(41)	1310(32)	1318
		$\frac{1}{2}\left(\frac{1}{2}{ }^{-}\right)$	1917(27)	1808(92)	1558(76)	1415(50)	1690-1950
	Ξ^{*}	$\frac{1}{2}\left(\frac{3}{2}+\right)$	1594(24)	1656(35)	1606(40)	1526(29)	1530
		$\frac{1}{2}\left(\frac{3}{2}-\right)$	2164(42)	2034(95)	1810(77)	1578(48)	1820
-3		$0\left(\frac{3}{2}\right)$	1661(21)	1723(32)	1685(37)	1606(43)	1672
		$0\left(\frac{3}{2}^{-}\right)$	2193(30)	2092(91)	1863(76)	1576(66)	2250

~300 MeV

Octet Masses versus T

Decuplet Masses versus T

Hadron Resonance Gas

- applicable in confined phase
- non-interacting gas of (bound) hadrons
- thermodynamic partition function, multiplicity given by Boltzmann weight

Fit: $\quad m_{-}(T)=\omega(T, \gamma) m_{-}(0)+[1-\omega(T, \gamma)] m_{-}\left(T_{c}\right)$
where $\omega(T, \gamma)=\frac{\tanh \left[\left(1-T / T_{c}\right) / \gamma\right]}{\tanh [1 / \gamma]} \quad \gamma \sim$ width

Hadron Resonance Gas

Lattice data from:
Budapest-Wuppertal: JHEP 1201 (2012) 138
Phys. Rev. D 92 (2015) no.11, 114505

Pressure from HRG

Contributions from strange baryons

Lattice data from:
P. Alba et al., Phys. Rev. D 96 (2017) no.3, 034517

Spectral Functions

$$
K(\tau, \omega)=\frac{e^{-\omega \tau}}{1+e^{-\omega / T}}
$$

Input Data: $G_{ \pm}(\tau), \tau=1, \ldots, \mathcal{O}(10) \quad$ Output Data: $\rho_{ \pm}(\omega), \omega \sim 1, \ldots, \mathcal{O}(1000)$

ill-posed!

Maximum Entropy Method

Need to maximise $P(F \mid D)$
Bayes Theorem:

$$
\begin{aligned}
& P(F \mid D) P(D)=P(D \mid F) P(F) \\
& \text { i.e. } \quad P(F \mid D)=\frac{P(D \mid F) P(F)}{P(D)}
\end{aligned}
$$

But $P(D \mid F) \sim e^{-\chi^{2}} \longrightarrow \quad$ minimising $\chi^{2} \neq$ maximising $P(F \mid D)$
\longrightarrow Maximum Likelihood Method wrong??

Maximum Entropy Method

Need to maximise $P(F \mid D)$
Bayes Theorem:

$$
\begin{aligned}
& P(F \mid D) P(D)=P(D \mid F) P(F) \\
& \text { i.e. } \quad P(F \mid D)=\frac{P(D \mid F) P(F)}{P(D)}
\end{aligned}
$$

But $P(D \mid F) \sim e^{-\chi^{2}} \longrightarrow$ minimising $\chi^{2} \neq$ maximising $P(F \mid D)$
\longrightarrow Maximum Likelihood Method wrong??
$P(F) \sim e^{S} \quad$ Shannon-Jaynes entropy: $\quad S=\int_{0}^{\infty} \frac{d \omega}{2 \pi}\left[\rho(\omega)-m(\omega)-\rho(\omega) \ln \frac{\rho(\omega)}{m(\omega)}\right]$
Competition between minimising χ^{2} and maximising S

Spectral Function Dictionary

Nucleon spectral function via MEM

$\mathrm{T}>\mathrm{Tc}$

Δ spectral function via MEM

$\mathrm{T}>\mathrm{Tc}$

$\boldsymbol{\Omega}$ spectral function via MEM

$\mathrm{T}>\mathrm{Tc}$

Comparison between baryons

$\mathrm{T}=0.24 \mathrm{Tc}$

$\mathrm{T}=1.90 \mathrm{Tc}$

Summary - Hyperon Spectrum

- Used
- raw correlators
- conventional exp fits
- spectral f'ns (MEM)
- Confined phase:

- +ve parity masses \sim constant $\neq f(T)$
- -ve parity masses 】as T
- Deconfined phase:
- degeneracy of parity ground states
- some signs of degeneracy amongst baryon channels
- In progress: Gen2L (and Gen3)

BOTTOMONIUM

- NRQCD approach for b-quark
- Main results from Gen 2
- Checks against

- Gen 2L (light)
- Gen 3 (finer temporal lattice)

T=0 Correlators

$$
G(\tau) \equiv \sum_{x}\langle 0| J(x, \tau) J^{\dagger}(0,0)|0\rangle \quad \xrightarrow{\tau \rightarrow \infty} \quad \frac{\mid\langle 0| J \mid \text { gnd }\rangle\left.\right|^{2}}{2 M} e^{-M \tau}
$$

$\mathrm{T}=0$ spectral functions

$$
G(\tau)=\int_{\omega_{\min }}^{\omega_{\max }} \frac{\mathrm{d} \omega}{2 \pi} K(\tau, \omega) \rho(\omega), \quad K(\tau, \omega)=e^{-\omega \tau}
$$

Themal modification of \boldsymbol{Y} spectral function

CMS pp versus PbPb

Generation 3 Results

Upsilon: Gen2 vs Gen3 Going towards (temporal) continuum

$\chi_{\mathrm{b} 1}$: Gen2 vs Gen3 Going towards (temporal) continuum

Generation 2L Results

Upsilon: Gen2 vs Gen2L Going lighter

Preliminary

Summary - Bottomonium

- FASTSUM has analysed three different ensembles
- "Gen2"
- "Gen2L" (Preliminary)
- "Gen3" (one T only)

- Produced results for for bottomonium using NRQCD
- Main results:
- S-wave $Y \& \eta_{\mathrm{b}}$ stable well above T_{c}
- P-wave $\chi_{b 1}$ melts not far above T_{c}

Summary - Hyperon Spectrum

- Used
- raw correlators
- conventional exp fits
- spectral f'ns (MEM)
- Confined phase:
- +ve parity masses \sim constant $\neq \mathrm{f}(\mathrm{T})$

- -ve parity masses 】as T \nearrow
- Deconfined phase:
- degenerancy of parity gnd states
- some signs of degneracy amongst baryon channels
- In progress: Gen2L (and Gen3)

