
FASTSUM Collaboration 
  

Gert Aarts, Chris Allton, Sergio Chaves, Davide de Boni, Jonas Glesaaen, 
Simon Hands, Alan Kirby, Aleksandr Nikolaev, Sam Offler, Chrisanthi Praki  

Swansea University 
  

Benjamin Jäger 
Southern Denmark University   

  

Seyong Kim 
Sejong University, Korea 

  

Maria Paola Lombardo 
INFN, Florence 

  

Sinead Ryan 
Trinity College, Dublin 

  

Jon-Ivar Skullerud 
National University of Ireland, Maynooth, Ireland 

  

Liang-Kai Wu 
Jiangsu University, China

Hyperons in thermal QCD



Overview
• Baryons in medium: rarely studied! 
• FASTSUM approach 

• Anisotropy 
• New, lighter ensemble + finer ensemble 

• Hyperons at non-zero T
• Hadron Resonance Gas (for “warm” baryons) 
• Parity doubling (for “hot” baryons) 

• Other FASTSUM Results 
• Bottomonium
• Conductivity 
• Dense matter mesons 

• Conclusions



Baryons in a medium
Previous Work:

Lattice studies of baryons at finite temperature very limited, (all quenched)
•  ︎  screening masses De Tar and Kogut 1987  
•  ︎  with a small chemical potential 

             QCD-TARO: Pushkina, de Forcrand, Kim, Nakamura, Stamatescu et al 2005  
•  ︎  temporal correlators Datta, Gupta, Mathur et al 2013 

Effective models, mostly at T ∼ 0 and nuclear density ⇒ parity doubling models 
De Tar & Kunihiro 89 Mukherjee, Schramm, Steinheimer & Dexheimer, Sasaki 2017 

Our Work:

PRD 92 (2015) 014503 [arXiv:1502.03603]
JHEP 06 (2017) 034 [arXiv:1703.09246]
Phys.Rev. D99 (2019) no.7, 074503  [arXiv:1812.07393]



Parity

No parity doubling in (T=0) Nature:

+ve parity:                                GeV 
-ve parity:                                  GeV

Question: What happens as T increases?

Lattice:
Parity operation:

Construct correlation functions:

P𝒪(τ, ⃗x )P−1 = γ4𝒪(τ, − ⃗x )

m+ = mN = 0.939
m− = mN* = 1.535 Motivation

mq = 0 ) chiral symmetry SU(2)V⇥ SU(2)A of QCD action

⇤A :  0 = ei✓i�5Ti  ,  ̄0 =  ̄ ei✓i�5Ti

Ti generators of SU(Nf ) , i = 1, . . . ,N2
f
� 1

Positive and negative parity baryonic correlators (zero momentum)

G±(⌧) =

Z
dx htrO(x, ⌧)P±O(0, 0)i , P± =

1
2
( ± �4)

G±(⌧) ⇡ A± e�m±⌧ + A⌥ e�m⌥(a⌧N⌧�⌧)

Chiral symmetry ) G+ = �G� ) m+ = m� (parity doubling)



Symmetries
Charge conjugation  (at zero density):
 
                                                                                             (✶)

i.e. positive/negative parity states propagate forward/backward in 𝜏
  

Eg. for a single state:
 
 
 
 

(Contrasts with meson sector)

Chiral symmetry:

Constrains spinor structure so that                                        ie. parity doubling:   m+ = m-

Together with (✶)                                                                      i.e. forward/back symmetry

Question:  Does this happen in Nature in deconfined phase?
•   assuming mq ~ 0
•   what about the strange-quark sector

G±(τ) = − G∓(1/T − τ)

G+(τ) = A+e−m+τ + A−e−m−(1/T−τ)

G+(τ) = − G−(τ)

⟶ G+(τ) = G+(1/T − τ)

1/T = Nτaτ ≡ Lτ

FASTSUM set up

I anisotropic lattices a⌧ < as
I allowing better resolution, particularly at finite temperatures

since T =
1

N⌧a⌧

τ

x

τ

x

I "2nd" generation lattice ensembles
I moving towards continuum, infinite volume, realistic light

quark masses



Nucleon Correlators

Motivation

mq = 0 ) chiral symmetry SU(2)V⇥ SU(2)A of QCD action

⇤A :  0 = ei✓i�5Ti  ,  ̄0 =  ̄ ei✓i�5Ti

Ti generators of SU(Nf ) , i = 1, . . . ,N2
f
� 1

Positive and negative parity baryonic correlators (zero momentum)

G±(⌧) =

Z
dx htrO(x, ⌧)P±O(0, 0)i , P± =

1
2
( ± �4)

G±(⌧) ⇡ A± e�m±⌧ + A⌥ e�m⌥(a⌧N⌧�⌧)

Chiral symmetry ) G+ = �G� ) m+ = m� (parity doubling)
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Figure 10. Operator dependence in the nucleon channel at T/Tc = 0.76 (left) and 1.52 (right), in
the correlators (above) and the corresponding spectral functions (below). For clarity, error bands
are shown for operator 4 only.

perature, where spectral functions are broadened and bound states eventually dissolve,

spectral weight will potentially be nonzero at all energies. It is then less clear which fea-

tures of the spectral function are invariant (and reflect the underlying physics) and which

are e.g. operator dependent.

Smearing was already discussed to some extent in ref. [33]. Here we study the role of

different operators. We focus on the nucleon, with the interpolator chosen to be

Oα
N (x) = ϵabcu

α
a (x)

(
d
T

b (x)CYnuc(x)
)
, (5.3)

where n = 4, 5, 6 and operators Y4 = γ5, Y5 = γ4γ5 and Y6 =
1
2(Y4+Y5) (this nomenclature

follows Chroma [40]). Note that in the main part of the paper we have used operator Y4.

The operator dependence is shown in figure 10 for two temperatures. We observe that the

correlators depend on the operator, as expected, since the overlap with ground- and excited

states will differ. This manifests itself e.g. in the skewness of the correlator below Tc, while

at high temperature approximate parity doubling is visible for all three operators. Below

Tc, we can quantify the spectral properties more precisely by comparing the masses mN
±

– 22 –
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2 Baryonic correlators and spectral functions

We start with a brief discussion of baryonic operators and spectral relations for fermionic

two-point functions. While for mesonic (bosonic) correlators the type of relations discussed

below are very well known [37], for fermionic ones this is slightly less so. Moreover, it allows

us to discuss how parity doubling manifests itself in correlators and spectral functions.

2.1 Baryonic operators

We consider two-point functions of fermionic operators, of the form

Gαα′
(x) =

〈
Oα(x)O

α′
(0)

〉
, (2.1)

where α,α′ are Dirac indices and O = O†γ4.2 The simplest annihilation operators for the

nucleon, ∆ and Ω baryons are respectively [39, 40]

Oα
N (x) = ϵabc u

α
a (x)

(
d
T

b (x)Cγ5uc(x)
)
, (2.2)

Oα
∆,i(x) = ϵabc

[
2uαa (x)

(
d
T

b (x)Cγiuc(x)
)
+ dαa (x)

(
u

T

b (x)Cγiuc(x)
)]

, (2.3)

Oα
Ω,i(x) = ϵabc s

α
a (x)

(
s
T

b (x)Cγisc(x)
)
, (2.4)

where C corresponds to the charge conjugation matrix, satisfying

C†C = 1, γ
T

µ = −CγµC
−1, C

T
= −C−1, (2.5)

and hence γ
T

5 = Cγ5C−1. We note here that as written eq. (2.3) describes the charged

∆+(uud) channel. However, since QED interactions are not incorporated and the two

light quarks are taken to be degenerate (isospin limit), the operator is also relevant for the

neutral ∆0(ddu) channel. The ∆++(uuu) and ∆−(ddd) states are in principle described

by an operator of the form (2.4), with s → u, d, but again in the degenerate limit one can

show that Wick contractions coming from the latter are identical to the ones derived from

eq. (2.3).

Under parity, elementary quark fields transform as

Pψ(x)P−1 = γ4ψ(Px), P = diag (−1,−1,−1, 1). (2.6)

It is straightforward to verify that this property is inherited by the baryonic operators,

PO(x)P−1 = γ4O(Px). (2.7)

Hence one may introduce parity projectors and operators via

P± =
1

2
(1± γ4) , O±(x) = P±O(x), (2.8)

2We follow the conventions in ref. [38] and use euclidean gamma-matrices, γ†
µ = γµ = γ−1

µ , with µ =

1, . . . , 4, and γ†
5 = γ5 = γ1γ2γ3γ4.
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Nucleon:

Delta:

Omega:

Different Operator Choices:



Name N � ⇤ ⌃ ,⌃⇤ ⌅ , ⌅⇤ ⌦
Isospin 1/2 3/2 0 1 1/2 0

Strangeness 0 -1 -2 -3

Spin 1/2 octet Spin 3/2 decuplet

Baryons



Name N � ⇤ ⌃ ,⌃⇤ ⌅ , ⌅⇤ ⌦
Isospin 1/2 3/2 0 1 1/2 0

Strangeness 0 -1 -2 -3

Spin 1/2 octet Spin 3/2 decuplet

Baryons: No isospin



Lattice Parameters - Generation 2

J
H
E
P
0
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0
1
7
)
0
3
4

Ns Nτ T [MeV] T/Tc Nsrc Ncfg

24 128 44 0.24 16 139

24 40 141 0.76 4 501

24 36 156 0.84 4 501

24 32 176 0.95 2 1000

24 28 201 1.09 2 1001

24 24 235 1.27 2 1001

24 20 281 1.52 2 1000

24 16 352 1.90 2 1001

Table 1. Ensembles used in this work. The lattice size is N3
s × Nτ , with the temperature

T = 1/(aτNτ ). The available statistics for each ensemble is Ncfg ×Nsrc. The sources were chosen
randomly in the four-dimensional lattice. The spatial lattice spacing as = 0.1227(8) fm, the inverse
temporal lattice spacing a−1

τ = 5.63(4)GeV, and the renormalised anisotropy ξ = as/aτ = 3.5.

G4,m are then no longer (anti)symmetric around τ = 1/2T , but satisfy instead

G4(1/T − τ,p;µ) = G4(τ,p;−µ), (2.56)

Gm(1/T − τ,p;µ) = −Gm(τ,p;−µ). (2.57)

Again explicitly, if the spectrum is dominated by single groundstates, eq. (2.42) is modi-

fied as

G+(τ ;µ) = A+(µ)e
−(m+−µ)τ +A−(−µ)e−(m−+µ)(1/T−τ), (2.58)

−G−(τ ;µ) = A−(µ)e
−(m−−µ)τ +A+(−µ)e−(m++µ)(1/T−τ). (2.59)

Finally, in the case of unbroken chiral symmetry, Gm(x) = ρm(x) = 0 still holds and

G+(τ,p;µ) = −G−(τ,p;µ) = G+(1/T − τ,p;−µ) = 2G4(τ,p;µ), (2.60)

ρ+(p;µ) = −ρ−(p;µ) = ρ+(−p;−µ) = 2ρ4(p;µ). (2.61)

3 Lattice setup

We have computed baryon correlators using the thermal ensembles of the FASTSUM collab-

oration [15, 16, 27]. These ensembles are generated with 2 + 1 flavours of Wilson fermions

on an anisotropic lattice, with a smaller temporal lattice spacing, aτ < as; the renor-

malised anisotropy is ξ ≡ as/aτ = 3.5. The lattice action used is the Symanzik-improved

anisotropic gauge action with tree-level mean-field coefficients and a mean-field-improved

Wilson-clover fermion action with stout-smeared links and follows the Hadron Spectrum

Collaboration [47]. Details of the action and parameter values can be found in refs. [16, 27].

The choice of masses for the degenerate u and d quarks yields a pion with a mass of

Mπ = 384(4)MeV [48], which is heavier than in nature, while the strange quark has been

tuned to its physical value. Configurations and correlation functions have been generated

using the CHROMA software package [40], via the SSE optimizations when possible [49].
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T = 1/L 

           =1/(a  N  )𝜏

𝜏

𝜏

FASTSUM set up

I anisotropic lattices a⌧ < as
I allowing better resolution, particularly at finite temperatures

since T =
1

N⌧a⌧

τ

x

τ

x

I "2nd" generation lattice ensembles
I moving towards continuum, infinite volume, realistic light

quark masses

FASTSUM set up

I anisotropic lattices a⌧ < as
I allowing better resolution, particularly at finite temperatures

since T =
1

N⌧a⌧

τ

x

τ

x

I "2nd" generation lattice ensembles
I moving towards continuum, infinite volume, realistic light

quark masses

(2+1) flavour
Quark Mass:       M𝜋 = 392(4) MeV 
Lattice Spacing:  as = 0.123 fm 
Anisotropy:          as/at = 5.6 
Spatial Volume:  (3fm)3 - (4fm)3
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J
H
E
P
0
6
(
2
0
1
7
)
0
3
4

Ns Nτ T [MeV] T/Tc Nsrc Ncfg

24 128 44 0.24 16 139

24 40 141 0.76 4 501

24 36 156 0.84 4 501

24 32 176 0.95 2 1000

24 28 201 1.09 2 1001

24 24 235 1.27 2 1001

24 20 281 1.52 2 1000

24 16 352 1.90 2 1001

Table 1. Ensembles used in this work. The lattice size is N3
s × Nτ , with the temperature

T = 1/(aτNτ ). The available statistics for each ensemble is Ncfg ×Nsrc. The sources were chosen
randomly in the four-dimensional lattice. The spatial lattice spacing as = 0.1227(8) fm, the inverse
temporal lattice spacing a−1

τ = 5.63(4)GeV, and the renormalised anisotropy ξ = as/aτ = 3.5.

G4,m are then no longer (anti)symmetric around τ = 1/2T , but satisfy instead

G4(1/T − τ,p;µ) = G4(τ,p;−µ), (2.56)

Gm(1/T − τ,p;µ) = −Gm(τ,p;−µ). (2.57)

Again explicitly, if the spectrum is dominated by single groundstates, eq. (2.42) is modi-

fied as

G+(τ ;µ) = A+(µ)e
−(m+−µ)τ +A−(−µ)e−(m−+µ)(1/T−τ), (2.58)

−G−(τ ;µ) = A−(µ)e
−(m−−µ)τ +A+(−µ)e−(m++µ)(1/T−τ). (2.59)

Finally, in the case of unbroken chiral symmetry, Gm(x) = ρm(x) = 0 still holds and

G+(τ,p;µ) = −G−(τ,p;µ) = G+(1/T − τ,p;−µ) = 2G4(τ,p;µ), (2.60)

ρ+(p;µ) = −ρ−(p;µ) = ρ+(−p;−µ) = 2ρ4(p;µ). (2.61)

3 Lattice setup

We have computed baryon correlators using the thermal ensembles of the FASTSUM collab-

oration [15, 16, 27]. These ensembles are generated with 2 + 1 flavours of Wilson fermions

on an anisotropic lattice, with a smaller temporal lattice spacing, aτ < as; the renor-

malised anisotropy is ξ ≡ as/aτ = 3.5. The lattice action used is the Symanzik-improved

anisotropic gauge action with tree-level mean-field coefficients and a mean-field-improved

Wilson-clover fermion action with stout-smeared links and follows the Hadron Spectrum

Collaboration [47]. Details of the action and parameter values can be found in refs. [16, 27].

The choice of masses for the degenerate u and d quarks yields a pion with a mass of

Mπ = 384(4)MeV [48], which is heavier than in nature, while the strange quark has been

tuned to its physical value. Configurations and correlation functions have been generated

using the CHROMA software package [40], via the SSE optimizations when possible [49].
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Figure 3. Groundstate masses in the positive- and negative-parity channels at all temperatures,
assuming the exponential decay of eq. (4.2), in the N (left) and Ω (right) channels.

also included in table 2. The smaller value of δΩ at all four temperatures is due to both

mΩ
+ being larger and δmΩ being smaller. Both of these effects are presumably due to

the s quark being heavier than the u and d quarks, which makes the contribution to the

groundstate mass due to chiral symmetry breaking less important in the Ω channel.

4.2 Quark-gluon plasma

We now turn to the temperatures above the deconfinement transition. To start, we have

considered the same analysis as above, using exponential fits, assuming that the hypothesis

of separated well-defined groundstates still holds. The results are shown in figure 3, in theN

and Ω channels. We observe a clear qualitative change when going from T/Tc = 0.95 to 1.09

(or reducing Nτ from 32 to 28). The error on the would-be groundstate masses, obtained

by combining systematic and statistical uncertainties, is substantially larger, which cannot

be simply explained by the reduction in the number of time slices used in the fits. This,

and other results presented below, lead us to conclude that bound states are absent at

T/Tc = 1.09, both for the light baryons and in the Ω channel. Hence even though the

transition is a crossover, we find that the spectrum changes rather drastically between 0.95

and 1.09Tc.

We hence focus on the signal for parity doubling, i.e. the emergent degeneracy in the

positive- and negative parity channels. Following ref. [32], we study the ratio

R(τ) =
G+(τ)−G+(1/T − τ)

G+(τ) +G+(1/T − τ)
, (4.4)

which approaches 1 in the case that separated groundstates dominate, with m− ≫ m+, but

vanishes in the case of parity doubling. We have previously shown R(τ) for all temperatures

in the nucleon sector [35]. Here we present the outcome at two selected temperatures in

figure 4 in the N , ∆ and Ω channels. We note the clear qualitative and quantitative

difference: below Tc the ratio is significantly different from zero,7 while at the highest

temperature it is much smaller. It should be emphasised that if chiral symmetry is exactly

7We note that by construction R(τ) approaches zero at the centre of the lattice, τ/aτ = Nτ/2.
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Figure 4. Ratio R(τ) in the N , ∆ and Ω channels, at T/Tc = 0.76 (left) and 1.90 (right).
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Figure 5. Temperature dependence of R in the N , ∆ and Ω channels.

restored, complete degeneracy in the positive- and negative-parity channels is expected

and R(τ) = 0. In our lattice simulations such a clear signal cannot be expected for a

number of reasons. First of all we use Wilson fermions, which break chiral symmetry at

short distances. We have found that smearing suppresses these contributions, yielding a

better signal for parity doubling [35]. Moreover, the quarks are not massless, with the two

light flavours heavier than in nature. Hence this explicit symmetry breaking also affects

the signal. However, this is expected to become less important at higher temperature,

being suppressed as mq/T . The effect of the finite quark mass can be seen in the splitting

of R(τ) in figure 4 (right) between the N,∆ channels and the Ω channel at the highest

temperature; this is most likely due to the larger s quark mass.

In order to summarise the results for all temperatures, we show in figure 5 the

summed ratio

R ≡
∑Nτ/2−1

n=1 R(τn)/σ2(τn)
∑Nτ/2−1

n=1 1/σ2(τn)
, (4.5)

where τn = aτn and σ(τn) are the statistical uncertainties, used as weights.
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Masses from exponential fits 
(confined phase)

3

S I(JP ) T/Tc = 0.24 0.76 0.84 0.95 PDG

0
N

1
2
( 1
2

+
) 1159(13) 1192(39) 1169(53) 1104(40) 939

1
2
( 1
2

−
) 1778(52) 1628(104) 1425(94) 1348(83) 1535

∆
3
2
( 3
2

+
) 1459(58) 1521(43) 1449(42) 1377(37) 1232

3
2
( 3
2

−
) 2138(117) 1898(106) 1734(97) 1526(74) 1710

Σ
1( 1

2

+
) 1277(13) 1330(38) 1290(44) 1230(33) 1193

1( 1
2

−
) 1823(35) 1772(91) 1552(65) 1431(51) 1750

−1 Λ
0( 1

2

+
) 1248(12) 1293(39) 1256(54) 1208(26) 1116

0( 1
2

−
) 1899(66) 1676(136) 1411(90) 1286(75) 1405–1670

Σ∗ 1( 3
2

+
) 1526(32) 1588(40) 1536(43) 1455(35) 1385

1( 3
2

−
) 2131(62) 1974(122) 1772(103) 1542(60) 1670–1940

−2
Ξ

1
2
( 1
2

+
) 1355(9) 1401(36) 1359(41) 1310(32) 1318

1
2
( 1
2

−
) 1917(27) 1808(92) 1558(76) 1415(50) 1690–1950

Ξ∗
1
2
( 3
2

+
) 1594(24) 1656(35) 1606(40) 1526(29) 1530

1
2
( 3
2

−
) 2164(42) 2034(95) 1810(77) 1578(48) 1820

−3 Ω
0( 3

2

+
) 1661(21) 1723(32) 1685(37) 1606(43) 1672

0( 3
2

−
) 2193(30) 2092(91) 1863(76) 1576(66) 2250

TABLE II. Groundstate masses m± (in MeV) for baryons with strangeness S in both parity sectors (P = ±) in the confined
phase. Estimates for statistical and systematic uncertainties are included. The final column shows the T = 0 values from the
PDG. Note that in some cases there is more than one candidate.

A few things can be noted. We start at the low-
est temperature. Since the light quarks are somewhat
heavy, the S = 0 states at the lowest temperature are
also heavier than in nature. However, since in our sim-
ulations the s quark has its physical mass, for hyper-
ons this difference is reduced as strangeness decreases.
Negative-parity states are typically about 500-600 MeV
heavier than their partners, both in our simulations and
in the PDG. Some negative-parity states in the PDG
seem anomalously light, such as the Λ(1405), and the sta-
tus of this state is indeed under discussion (see e.g. the
review [31] and references therein). In these cases, Table
II also lists masses from the PDG which are separated
by about 500 MeV and hence are potential candidates
for parity partners, as suggested by our results at the
lowest temperature (we note here that our spectroscopy
methods are not specifically designed for high-precision
spectroscopy in vacuum). As a final remark at the low-
est temperature, we note that the positive-parity masses
satisfy, to high precision, the Gell-Mann–Okubo mass re-
lation [32, 33]

3

4
mΛ +

1

4
mΣ −

1

2
(mN +mΞ) = 0, (3)

for octet baryons and Gell-Mann’s equal spacing rule

mΣ∗ −m∆ = mΞ∗ −mΣ∗ = mΩ −mΞ∗ (4)

for decuplet baryons, also for our choice of quark masses,
but the negative-parity masses do not (as is expected).
We now turn to the discussion of temperature effects,

also presented in Table II and summarised in Figs. 1 and
2, where we show m±(T ) in the various channels, nor-
malised with m+ at the lowest temperature, T0 = 44
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FIG. 1. Temperature dependence of the groundstate
masses, normalised with m+ at the lowest temperature,
m±(T )/m+(T0), in the hadronic phase, for octet baryons.
Positive- (negative-) parity masses are indicated with open
(closed) symbols.

MeV. Several observations can be made. The positive-
parity masses are largely temperature independent. A
slight increase and subsequent drop when approaching
the transition can be seen, but it is not significant within
current errors. A corollary is that the relations (3, 4) are
satisfied throughout the confined phase (within error),
which constrains thermal model-building efforts. The
negative-parity masses on the other hand drop in all
channels in a similar way, and become near-degenerate
with the corresponding positive-parity mass near the

G(τ) = A+e−M+τ + A−e−M−τ
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ons this difference is reduced as strangeness decreases.
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heavier than their partners, both in our simulations and
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tus of this state is indeed under discussion (see e.g. the
review [31] and references therein). In these cases, Table
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by about 500 MeV and hence are potential candidates
for parity partners, as suggested by our results at the
lowest temperature (we note here that our spectroscopy
methods are not specifically designed for high-precision
spectroscopy in vacuum). As a final remark at the low-
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MeV. Several observations can be made. The positive-
parity masses are largely temperature independent. A
slight increase and subsequent drop when approaching
the transition can be seen, but it is not significant within
current errors. A corollary is that the relations (3, 4) are
satisfied throughout the confined phase (within error),
which constrains thermal model-building efforts. The
negative-parity masses on the other hand drop in all
channels in a similar way, and become near-degenerate
with the corresponding positive-parity mass near the

G(τ) = A+e−M+τ + A−e−M−τ

~300 MeV
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Hadron Resonance Gas 
• applicable in confined phase 
• non-interacting gas of (bound) hadrons 
• thermodynamic partition function, multiplicity given by Boltzmann weight

Fit: m−(T ) = ω(T, γ) m−(0) + [1 − ω(T, γ)] m−(Tc)

where ω(T, γ) =
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tanh[1/γ]
γ

1

1.2

1.4

1.6

N(−)
N(+)

Σ(−)
Σ(+)

0 50 100 150

T [MeV]

1

1.2

1.4

m
(T

)/m
+
(T

0)

Λ(−)
Λ(+)

0 50 100 150

Ξ(−)
Ξ(+)

S=0 S=−1

S=−1 S=−2

octet (spin 1/2)

~ width



130 140 150 160
T [MeV]

0

0.02

0.04

0.06

0.08

0.1

−<
B

S>
/V
T 3

HRG
Budapest-Wuppertal (cont.)

in-medium HRG 

Lattice data from:  
Budapest-Wuppertal:   JHEP 1201 (2012) 138
                                     Phys. Rev. D 92 (2015) no.11, 114505

−
⟨ B

S⟩
/V

T3

Hadron Resonance Gas 



Pressure from HRG 
Contributions from strange baryons

0

0.02

0.04

0.06

0.08

0.1

HRG

0

0.01

0.02

0.03

0.04

0.05

0.06

130 140 150 160

T [MeV]

0

0.002

0.004

0.006

0.008

0.01

0.012

p(
|B

|=
1)

/T
 4

130 140 150 160
0

0.0002

0.0004

0.0006

0.0008

0.001

S=0 |S|=1

|S|=2 |S|=3

in-medium HRG

Lattice data from: 
P. Alba et al., Phys. Rev. D 96 (2017) no.3, 034517

p(
| B

| =
1)

/T
4



T = 0

T = 0

Continuum Lattice

/

Ordinary QCD

Extreme QCD Spectral F’ns

Bound States

C
on

fin
ed

D
ec

on
fin

ed

T < Tc

T > Tc



Spectral Functions

Maximum Entropy Method: Motivation

Do bound hadronic states persist into the “quark-gluon” plasma phase?
How can we extract transport coefficients?

Spectral functions can answer this!

C(t, p⃗) =

∫

ρ(ω, p⃗) K(t,ω) dω

↑ ↓ ↖

Euclidean Spectral (Lattice)
Correlator Function Kernel

where the (lattice) Kernel is:

K(t,ω) =
cosh[ω(t−Nt/2)]

sinh[ω/(2T )]

∼ exp[−ωt]

– p. 31/58
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5 Thermal baryon spectral functions

5.1 Results

The information in the thermal correlators discussed above is also present in the corre-

sponding spectral functions, via relation (2.27)

G±(τ) =

∫ ∞

−∞

dω

2π
K(τ,ω)ρ±(ω), K(τ,ω) =

e−ωτ

1 + e−ω/T
. (5.1)

As is well-known [56], a simple inversion of this type of relation, using numerically de-

termined correlators, is not possible. Hence we use the Maximum Entropy Method

MEM [56, 57], which extremises a combination of the standard likelihood (χ2) function,

determined by the data, and an entropy function,

S =

∫ ∞

−∞

dω

2π

[
ρ(ω)−m(ω)− ρ(ω) ln

ρ(ω)

m(ω)

]
, (5.2)

encoding prior knowledge, via the default model m(ω). The conditional probability to

be extremised is of the form exp(−1
2χ

2 + αS), with α a parameter balancing the relative

importance of the data and the prior knowledge. Both m(ω) and α are further discussed

below. In the past 15 years, this method, and related ones, have been used by a num-

ber of groups, mostly for mesonic correlators, i.e. charmonium, the dilepton rate and the

electrical conductivity, see e.g. refs. [13–24]. Applications to bottomonium, in which some

simplifications occur, can be found in refs. [25–28]. Here we give the first application

to baryons.

Generic details of our implementation can be found in previous work [13, 16, 25, 27].

Here we briefly mention some differences with the bosonic (mesonic) case. We are interested

in the spectrum for both positive and negative ω, since ρ−(ω) = −ρ+(−ω). Hence the

negative part of the spectrum of ρ+ informs us of ρ−, and vice versa. To bring the spectral

relation (5.1) to a numerically tractable form, we employ a cutoff −ωmax < ω < ωmax,

with aτωmax = 3.0 (ωmax = 16.9GeV). The remaining finite interval is discretised using

Nω = 2000 bins. We have varied both ωmax and Nω to verify robustness. In the MEM

analysis we used all the euclidean-time points, except for the time slices closest to the source

and sink. At the lowest temperature, we have left out the points around the minimum of

the correlators; this will be further discussed below. As default model, we use a featureless

constant, m(ω) = m0, where the value of m0 is determined by a fit to the correlation

function using ρ(ω) = m0 in eq. (5.1). Above Tc we have fixed the default model to ensure

a similar normalisation for all temperatures. We come back to the choice of default model

below as well.

We now discuss the results. We have performed MEM on the normalised correlators

G+(τ)/(aτG+(τ = 0)) and denote the associated dimensionless spectral functions with

ρ̄(ω). We note that the normalisation only affects the vertical scale but not the ω de-

pendence. Figure 7 contains the spectral functions in the three channels below Tc (left)

and above Tc (right). Spectral information for the positive-parity channel can be found at

ω > 0, whereas ω < 0 refers to the negative-parity channel. Below Tc, the groundstate
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As is well-known [56], a simple inversion of this type of relation, using numerically de-
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with aτωmax = 3.0 (ωmax = 16.9GeV). The remaining finite interval is discretised using

Nω = 2000 bins. We have varied both ωmax and Nω to verify robustness. In the MEM
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Input Data: Output Data: G±(τ), τ = 1,...,𝒪(10) ρ±(ω), ω ∼ 1,...,𝒪(1000)

ill-posed !



Maximum Entropy MethodBayes Theorem

Need to maximise P(F |D)

Bayes Theorem:

P(F |D)P(D) = P(D|F )P(F )

i.e. P(F |D) =
P(D|F )P(F )

P(D)

But P(D|F ) ⇠ e��2
�! minimising �2

6= maximising P(F |D)

�! Maximum Likelihood Method wrong??

No! Since for simple F (t) = Ze�Mt , P(F ) = P(Z ,M) ⇠ const
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P(D|F )P(F )
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�! minimising �2

6= maximising P(F |D)

�! Maximum Likelihood Method wrong??

No! Since for simple F (t) = Ze�Mt , P(F ) = P(Z ,M) ⇠ const
P(F) ~ eS

Maximum Entropy Method

Cont: G(⌧) =

Z
K (⌧,!)⇢(!)d! Lat: G(⌧i) =

X

j

K (⌧i ,!j) ⇢(!j)

Input data: ⌧i , i = {1, . . . ,O(10)} Output data : !j , j = {1, . . . ,O(103)}

�! ill-posed

P[⇢|DH] =
P[D|⇢H]P[⇢|H]

P[D|H]
/ exp(��2 + ↵S)

H = prior knowledge D = data

Shannon-Jaynes entropy: S =

Z 1

0
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2⇡
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�

Competition between minimising �2
and maximising S

Asakawa, Hatsuda, Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459

Competition between minimising 𝜒2 and maximising S 

Asakawa, Hatsuda, Nakahara, Prog.Part.Nucl.Phys. 46(2001)259
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Nucleon spectral function via MEM
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𝝙 spectral function via MEM
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𝝮 spectral function via MEM
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Comparison between baryons
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Summary - Hyperon Spectrum
• Used 

• raw correlators 
• conventional exp fits 
• spectral f’ns (MEM) 

• Confined phase: 
• +ve parity masses ~constant ≠ f(T) 
• -ve parity masses ↘︎ as T↗ 

• Deconfined phase: 
• degeneracy of parity ground states 
• some signs of degeneracy amongst baryon channels 

• In progress: Gen2L (and Gen3)

Mπ

aτ
Gen2Gen2L

Gen3





BOTTOMONIUM
• NRQCD approach for b-quark 

• Main results from Gen 2 

• Checks against 

• Gen 2L (light) 

• Gen 3 (finer temporal lattice)

Mπ

aτ
Gen2Gen2L

Gen3



T=0 CorrelatorsZero Temperature Correlators
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T=0 spectral functionsZero Temperature Spectral Functions
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Themal modification of 𝝪 
spectral function Thermal modification of ⌥ spectral function
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Generation 3 Results
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Generation 2L Results
Preliminary
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Summary - Bottomonium

• FASTSUM has analysed 
    three different ensembles 

• “Gen2”  
• “Gen2L” (Preliminary) 
• “Gen3” (one T only) 

• Produced results for for bottomonium using NRQCD 
• Main results: 

• S-wave 𝛶 & 𝜂b stable well above Tc 
• P-wave    b1 melts not far above Tc
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Summary - Hyperon Spectrum
• Used 

• raw correlators 
• conventional exp fits 
• spectral f’ns (MEM) 

• Confined phase: 
• +ve parity masses ~constant ≠ f(T) 
• -ve parity masses ↘︎ as T↗ 

• Deconfined phase: 
• degenerancy of parity gnd states 
• some signs of degneracy amongst baryon channels 

• In progress: Gen2L (and Gen3)
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