Hyperons in thermal QCD

FASTSUM Collaboration

Gert Aarts, <u>Chris Allton</u>, Sergio Chaves, Davide de Boni, Jonas Glesaaen, Simon Hands, Alan Kirby, Aleksandr Nikolaev, Sam Offler, Chrisanthi Praki *Swansea University*

> Benjamin Jäger Southern Denmark University

Seyong Kim Sejong University, Korea

Maria Paola Lombardo INFN, Florence

Sinead Ryan Trinity College, Dublin

Jon-Ivar Skullerud National University of Ireland, Maynooth, Ireland

> Liang-Kai Wu Jiangsu University, China

Overview

- Baryons in medium: *rarely studied!*
- FASTSUM approach
 - Anisotropy
 - New, lighter ensemble + finer ensemble

Hyperons at non-zero T

- Hadron Resonance Gas (for "warm" baryons)
- Parity doubling (for "hot" baryons)
- Other FASTSUM Results
 - Bottomonium
 - Conductivity
 - Dense matter mesons
- Conclusions

Baryons in a medium

Previous Work:

Lattice studies of baryons at finite temperature very limited, (all quenched)

- screening masses De Tar and Kogut 1987
- with a small chemical potential QCD-TARO: Pushkina, de Forcrand, Kim, Nakamura, Stamatescu et al 2005
- temporal correlators Datta, Gupta, Mathur et al 2013

Effective models, mostly at T ~ 0 and nuclear density \Rightarrow parity doubling models

De Tar & Kunihiro 89 Mukherjee, Schramm, Steinheimer & Dexheimer, Sasaki 2017

Our Work:

PRD 92 (2015) 014503 [arXiv:1502.03603] JHEP 06 (2017) 034 [arXiv:1703.09246] Phys.Rev. D99 (2019) no.7, 074503 [arXiv:1812.07393]

Parity

 $|P_0>$

x,y,z

A (x)

Creates a tower

 $A_{i}^{+}(x)$

No parity doubling in (T=0) Nature:

+ve parity: $m_{+} = m_{N} = 0.939$ GeV -ve parity: $m_{-} = m_{N^{*}} = 1.535$ GeV

Question: What happens as T increases?

Lattice:

Parity operation:

$$P\mathcal{O}(\tau, \overrightarrow{x})P^{-1} = \gamma_4 \mathcal{O}(\tau, -\overrightarrow{x})$$

Construct correlation functions:

$$G_{\pm}(\tau) = \int \mathrm{d}\mathbf{x} \langle \mathrm{tr} O(\mathbf{x}, \tau) P_{\pm} \overline{O}(\mathbf{0}, 0) \rangle , \qquad P_{\pm} = \frac{1}{2} (\mathbb{1} \pm \gamma_4)$$

Symmetries

Charge conjugation (at zero density):

$$G_{\pm}(\tau) = -G_{\mp}(1/T - \tau)$$
 (*)

i.e. **positive/negative** parity states propagate **forward/backward** in τ

Eg. for a single state: $G_{+}(\tau) = A_{+}e^{-m_{+}\tau} + A_{-}e^{-m_{-}(1/T-\tau)}$

(Contrasts with meson sector)

Chiral symmetry:

Constrains spinor structure so that $G_{+}(\tau) = -G_{-}(\tau)$ ie. parity doubling: $m_{+} = m_{-}$

Together with (*) $\longrightarrow G_{+}(\tau) = G_{+}(1/T - \tau)$ i.e. forward/back symmetry

Question: Does this happen in Nature in deconfined phase?

- assuming $m_q \sim 0$
- what about the strange-quark sector

 $1/T = N_{\tau}a_{\tau} \equiv L_{\tau}$

Nucleon Correlators

Nucleon:
$$O_N^{\alpha}(x) = \epsilon_{abc} u_a^{\alpha}(x) \left(d_b^T(x) C Y_n u_c(x) \right)$$

Different Operator Choices: $Y_4 = \gamma_5, Y_5 = \gamma_4 \gamma_5 \text{ and } Y_6 = \frac{1}{2}(Y_4 + Y_5)$

Delta: $O_{\Delta,i}^{\alpha}(x) = \epsilon_{abc} \left[2u_a^{\alpha}(x) \left(d_b^T(x) C \gamma_i u_c(x) \right) + d_a^{\alpha}(x) \left(u_b^T(x) C \gamma_i u_c(x) \right) \right]$

Omega: $O_{\Omega,i}^{\alpha}(x) = \epsilon_{abc} s_a^{\alpha}(x) \left(s_b^T(x) C \gamma_i s_c(x) \right)$

$$G_{\pm}(\tau) = \int \mathrm{d}\mathbf{x} \langle \mathrm{tr} O(\mathbf{x}, \tau) P_{\pm} \overline{O}(\mathbf{0}, 0) \rangle , \qquad P_{\pm} = \frac{1}{2} (\mathbb{1} \pm \gamma_4)$$

Baryons

Baryons: No isospin

	(2+1) flavour						
X		Quark	Mass:	$M_{\pi} = 392(4) \text{ MeV}$			
		Lattice	Spacing:	$a_{s} = 0.123 \text{ fm}$			
		Anisotr	opy:	$a_{s}/a_{t} = 5.6$			
		Spatial	Volume:	(3fm) ³ - (4fm) ³			

N_s^{-}	N_{τ}	$\tau T [{ m MeV}]$	T/T_c	$N_{ m src}$	$N_{\rm cfg}$
24	128	44	0.24	16	139
24	40	141	0.76	4	501
24	36	156	0.84	4	501
24	32	176	0.95	2	1000
24	28	201	1.09	2	1001
24	24	235	1.27	2	1001
24	20	281	1.52	2	1000
24	16	352	1.90	2	1001

 $T = 1/L_{\tau}$ $= 1/(a_{\tau}N_{\tau})$

N_s^-	N_{τ}	$\tau T [MeV]$	T/T_c	$N_{ m src}$	$N_{\rm cfg}$
24	128	44	0.24	16	139
24	40	141	0.76	4	501
24	36	156	0.84	4	501
24	32	176	0.95	2	1000
24	28	201	1.09	2	1001
24	24	235	1.27	2	1001
24	20	281	1.52	2	1000
24	16	352	1.90	2	1001

N_s^-	N_{τ}	$\tau T [MeV]$	T/T_c	$N_{ m src}$	N_{cfg}
24	128	44	0.24	16	139
24	40	141	0.76	4	501
24	36	156	0.84	4	501
24	32	176	0.95	2	1000
24	28	201	1.09	2	1001
24	24	235	1.27	2	1001
24	20	281	1.52	2	1000
24	16	352	1.90	2	1001

x T _c = 185(4) MeV									
1	$N_{\tau} = 128$ ensembles from								
Hadron Spectrum Collaboration									
N_s^-	N_{τ}	T [MeV]	T/T_c	$N_{ m src}$	$N_{\rm cfg}$				
24	128	44	0.24	16	139				
24	40	141	0.76	4	501				
24	36	156	0.84	4	501				
24	32	176	0.95	2	1000				
24	28	201	1.09	2	1001				
24	24	235	1.27	2	1001				
24	20	281	1.52	2	1000				
24	16	352	1.90	2	1001				

Lattice Parameters

Lattice Parameters

Generation 2 results

Lattice Nucleon Correlator: G+

Lattice Nucleon Correlator: G+

Raw Correlators

 τ/a_{τ}

Delta cf Nucleon

 $G_{+}(\tau) = ? A_{+}e^{-m_{+}\tau} + A_{-}e^{-m_{-}(1/T-\tau)}$

$$R(\tau) = \frac{G_{+}(\tau) - G_{+}(1/T - \tau)}{G_{+}(\tau) + G_{+}(1/T - \tau)}$$

 $R(\tau) \sim 0 \longrightarrow$ parity doubling

 $R(\tau) \sim 1 \longrightarrow$ parity max broken

$T/T_{\rm C} = 0.76$

$$R \equiv \frac{\sum_{n=1}^{N_{\tau}/2-1} R(\tau_n) / \sigma^2(\tau_n)}{\sum_{n=1}^{N_{\tau}/2-1} 1 / \sigma^2(\tau_n)}$$

- Cross-over occurs ~T_c
- effect of heavier s-quark visible

Point of Inflection versus T_c

Masses from exponential fits (confined phase)

$G(\tau) = A_{+}e^{-M_{+}\tau} + A_{-}e^{-M_{-}\tau}$

S		$I(J^P)$	$T/T_c = 0.24$	0.76	0.84	0.95	PDG
	N	$\frac{1}{2}(\frac{1}{2}^+)$	1159(13)	1192(39)	1169(53)	1104(40)	939
0	1 V	$\frac{1}{2}(\frac{1}{2}^{-})$	1778(52)	1628(104)	1425(94)	1348(83)	1535
	Δ	$\frac{3}{2}(\frac{3}{2}^+)$	1459(58)	1521(43)	1449(42)	1377(37)	1232
		$\frac{3}{2}(\frac{3}{2}^{-})$	2138(117)	1898(106)	1734(97)	1526(74)	1710
	Σ	$1(\frac{1}{2}^{+})$	1277(13)	1330(38)	1290(44)	1230(33)	1193
		$1(\frac{1}{2}^{-})$	1823(35)	1772(91)	1552(65)	1431(51)	1750
-1	Λ	$0(\frac{1}{2}^+)$	1248(12)	1293(39)	1256(54)	1208(26)	1116
1	11	$0(\frac{1}{2}^{-})$	1899(66)	1676(136)	1411(90)	1286(75)	1405-1670
	Σ^*	$1(\frac{3}{2}^+)$	1526(32)	1588(40)	1536(43)	1455(35)	1385
		$1(\frac{3}{2}^{-})$	2131(62)	1974(122)	1772(103)	1542(60)	1670-1940
	Ξ	$\frac{1}{2}(\frac{1}{2}^+)$	1355(9)	1401(36)	1359(41)	1310(32)	1318
-2		$\frac{1}{2}(\frac{1}{2}^{-})$	1917(27)	1808(92)	1558(76)	1415(50)	1690-1950
	[I] *	$\frac{1}{2}(\frac{3}{2}^+)$	1594(24)	1656(35)	1606(40)	1526(29)	1530
		$\frac{1}{2}(\frac{3}{2}^{-})$	2164(42)	2034(95)	1810(77)	1578(48)	1820
-3	Ω	$0(\frac{3}{2}^+)$	1661(21)	1723(32)	1685(37)	1606(43)	1672
0	<u>ں</u> د	$0(\frac{3}{2}^{-})$	2193(30)	2092(91)	1863(76)	1576(66)	2250

Masses from exponential fits (confined phase)

$G(\tau) = A_+ e^{-M_+ \tau} + A_- e^{-M_- \tau}$

S		$I(J^P)$	$T/T_c = 0.24$	0.76	0.84	0.95	PDG	
	N	$\frac{1}{2}(\frac{1}{2}^+)$	1159(13)	1192(39)	1169(53)	1104(40)	939 🗲	٦
0		$\frac{1}{2}(\frac{1}{2}^{-})$	1778(52)	1628(104)	1425(94)	1348(83)	1535	~300 MeV
	Δ	$\frac{3}{2}(\frac{3}{2}^+)$	1459(58)	1521(43)	1449(42)	1377(37)	1232 🗲	
		$\frac{3}{2}(\frac{3}{2}^{-})$	2138(117)	1898(106)	1734(97)	1526(74)	1710	
	Σ	$1(\frac{1}{2}^{+})$	1277(13)	1330(38)	1290(44)	1230(33)	1193	
		$1(\frac{1}{2}^{-})$	1823(35)	1772(91)	1552(65)	1431(51)	1750	
_1	Λ	$0(\frac{1}{2}^+)$	1248(12)	1293(39)	1256(54)	1208(26)	1116	
T	11	$0(\frac{1}{2}^{-})$	1899(66)	1676(136)	1411(90)	1286(75)	1405-1670	
	Σ^*	$1(\frac{3}{2}^+)$	1526(32)	1588(40)	1536(43)	1455(35)	1385	
		$1(\frac{3}{2}^{-})$	2131(62)	1974(122)	1772(103)	1542(60)	1670-1940	
	[1]	$\frac{1}{2}(\frac{1}{2}^+)$	1355(9)	1401(36)	1359(41)	1310(32)	1318	
-2		$\frac{1}{2}(\frac{1}{2}^{-})$	1917(27)	1808(92)	1558(76)	1415(50)	1690-1950	
	[1]	$\frac{1}{2}(\frac{3}{2}^+)$	1594(24)	1656(35)	1606(40)	1526(29)	1530	
		$\frac{1}{2}(\frac{3}{2}^{-})$	2164(42)	2034(95)	1810(77)	1578(48)	1820	
-3	Ω	$0(\frac{3}{2}^+)$	1661(21)	1723(32)	1685(37)	1606(43)	1672	
-0	26	$0(\frac{3}{2}^{-})$	2193(30)	2092(91)	1863(76)	1576(66)	2250	

Octet Masses versus T

Decuplet Masses versus T

Hadron Resonance Gas

- applicable in confined phase
- non-interacting gas of (bound) hadrons
- thermodynamic partition function, multiplicity given by Boltzmann weight

Fit:
$$m_{-}(T) = \omega(T, \gamma) m_{-}(0) + [1 - \omega(T, \gamma)] m_{-}(T_c)$$

where $\omega(T, \gamma) = \frac{tanh[(1 - T/T_c)/\gamma]}{tanh[1/\gamma]}$ $\gamma \sim \text{width}$
1.6
1.4
1.2
 $N(-)$
 $N(+)$
 1
 $M(-)$
 $N(+)$
 $M(-)$
 $N(+)$
 $M(-)$
 $M(-)$

Hadron Resonance Gas

Lattice data from:

Budapest-Wuppertal: JHEP 1201 (2012) 138 Phys. Rev. D 92 (2015) no.11, 114505

Pressure from HRG

Contributions from strange baryons

Lattice data from:

P. Alba et al., Phys. Rev. D 96 (2017) no.3, 034517

Spectral Functions

$$G_{\pm}(\tau) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} K(\tau, \omega) \rho_{\pm}(\omega)$$

$$\uparrow \qquad \qquad \downarrow$$
Euclidean (Lattice) Spectral
Correlator Kernel Function

$$K(\tau,\omega) = \frac{e^{-\omega\tau}}{1 + e^{-\omega/T}}$$

Input Data: $G_{\pm}(\tau), \tau = 1,...,\mathcal{O}(10)$ Output Data: $\rho_{\pm}(\omega), \omega \sim 1,...,\mathcal{O}(1000)$

ill-posed !

Maximum Entropy Method

Need to maximise P(F|D)

Bayes Theorem:

P(F|D)P(D) = P(D|F)P(F)

i.e.
$$P(F|D) = \frac{P(D|F)P(F)}{P(D)}$$

But
$$P(D|F) \sim e^{-\chi^2} \longrightarrow$$
 minimising $\chi^2 \neq$ maximising $P(F|D)$
 \longrightarrow Maximum Likelihood Method wrong??

Maximum Entropy Method

Need to maximise P(F|D)

Bayes Theorem:

P(F|D)P(D) = P(D|F)P(F)

i.e.
$$P(F|D) = \frac{P(D|F)P(F)}{P(D)}$$

But
$$P(D|F) \sim e^{-\chi^2} \longrightarrow$$
 minimising $\chi^2 \neq$ maximising $P(F|D) \longrightarrow$ Maximum Likelihood Method wrong??

P(F) ~ e^S Shannon-Jaynes entropy: $S = \int_0^\infty \frac{d\omega}{2\pi} \left[\rho(\omega) - m(\omega) - \rho(\omega) \ln \frac{\rho(\omega)}{m(\omega)} \right]$

Competition between minimising χ^2 and maximising S

Asakawa, Hatsuda, Nakahara, Prog.Part.Nucl.Phys. 46(2001)259

Spectral Function Dictionary

Nucleon spectral function via MEM

Δ spectral function via MEM

Ω spectral function via MEM

 $T < T_C$ $T > T_C$ 10 12 Ω Ω $-1.09 T_c$ - $0.24 T_c$ 10 8 $1.27 T_{c}$ $0.76 T_c$ $1.52 T_c$ $0.84 T_{c}$ 8 $1.90 T_{c}$ $0.95 T_c$ 6 $\bar{
ho}(\omega)$ $\bar{
ho}(\omega)$ 6 4 4 $\mathbf{2}$ $\mathbf{2}$ $\mathbf{0}$ 0 -16 -12 -8 8 -4 0 4 1216-16 -12 -8 8 -4 0 4 1216 ω [GeV] ω [GeV]

Comparison between baryons

 $T = 0.24 T_{C}$

Summary - Hyperon Spectrum

- Used
 - raw correlators
 - conventional exp fits
 - spectral f'ns (MEM)
- Confined phase:
 - +ve parity masses ~constant \neq f(T)
 - -ve parity masses ↘ as T ∕
- Deconfined phase:
 - degeneracy of parity ground states
 - some signs of degeneracy amongst baryon channels
- In progress: Gen2L (and Gen3)

BOTTOMONIUM

- NRQCD approach for b-quark
- Main results from Gen 2
- Checks against
 - Gen 2L (light)
 - Gen 3 (finer temporal lattice)

T=0 Correlators

T=0 spectral functions

$$G(au) = \int_{\omega_{\min}}^{\omega_{\max}} \frac{\mathrm{d}\omega}{2\pi} K(au, \omega) \,
ho(\omega), \qquad K(au, \omega) = e^{-\omega au}.$$

Themal modification of Υ spectral function

CMS pp versus PbPb

Generation 3 Results

Upsilon: Gen2 vs Gen3 Going towards (temporal) continuum

χ_{b1} : Gen2 vs Gen3 Going towards (temporal) continuum

Generation 2L Results

Upsilon: Gen2 vs Gen2L Going lighter

ω [GeV]

Preliminary

Summary - Bottomonium

- FASTSUM has analysed three different ensembles
 - "Gen2"
 - "Gen2L" (Preliminary)
 - "Gen3" (one T only)

- Produced results for for bottomonium using NRQCD
- Main results:
 - S-wave $Y \& \eta_b$ stable well above T_c
 - P-wave χ_{b1} melts not far above T_c

Summary - Hyperon Spectrum

- Used
 - raw correlators
 - conventional exp fits
 - spectral f'ns (MEM)
- Confined phase:
 - +ve parity masses \sim constant \neq f(T)
 - -ve parity masses 🥆 as T 🗡
- Deconfined phase:
 - degenerancy of parity gnd states
 - some signs of degneracy amongst baryon channels
- In progress: Gen2L (and Gen3)

