Recent results from NA61/SHINE

Szymon Puławski
for NA61/SHINE
Outline

• Introduction

• Study of the onset of deconfinement
 - Particle production properties
 - Flow

• Onset of fireball

• Search for critical point

• Strangeness production in p+p at 158 GeV/c:
 - $K^*(892)^0$
 - Ξ production
 - Search for pentaquark

• NA61/SHINE beyond 2020

• Summary

NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW

See P. Podlaski Tuesday
See A. Tefelska Thursday 4.10PM
See D. Tefelski Thursday, Poster A. Merzlaya
Fixed target experiment located at the CERN SPS accelerator

Beams:
- ions (Be, Ar, Xe, Pb)
 \(p_{\text{beam}} = 13\text{A} - 150\text{A} \text{ GeV}/c \)
- hadrons (\(\pi, K, p \))
 \(p_{\text{beam}} = 13 - 400 \text{ GeV}/c \)
- \(\sqrt{s_{NN}} = 5.1 - 16.8 \text{ (27.4)} \text{ GeV} \)

Large acceptance hadron spectrometer – coverage of the full forward hemisphere, down to \(p_T = 0 \)
NA61/SHINE performed the 2D scan in **collision energy and system size** to study the phase diagram of strongly interacting matter.
Uniqueness of heavy ion results from NA61/SHINE

NA61/SHINE recorded unique data for:

- Onset of deconfinement
- Onset of fireball
- Critical point?
Study of the onset of deconfinement: Particle production properties
Onset of deconfinement: step and horn

2D kaon spectra for central (0-10\%) Ar+Sc collisions

Ar+Sc→K±+X

K± spectra in p_T are fitted with

$$\frac{d^2 n}{dp_T dy} = \frac{S_p}{T^2 + T m_K} \exp \left(- \sqrt{\frac{p_T^2 + m_K^2}{T}} - m_K \right)$$
Onset of deconfinement: step

Plateau – **STEP** – in the inverse slope parameter T of m_T spectra in Pb+Pb collisions observed at SPS energies. This is expected for the onset of deconfinement due to mixed phase of HRG and QGP (SMES).

Qualitatively similar energy dependence is seen in $p+p$, $Be+Be$ and $Pb+Pb$ collisions.

Magnitude of T in $Be+Be$ slightly higher than in $p+p$.

$Ar+Sc$ results between $p+p/Be+Be$ and $Pb+Pb$.

See P. Podlaski Tuesday.
Onset of deconfinement: horn

Rapid changes in K^+ / π^+ – HORN – were observed in Pb+Pb collisions at SPS energies. This was predicted (SMES) as a signature of onset of deconfinement.

Plateau like structure visible in p+p
Be+Be close to p+p
Ar+Sc is higher than p+p but form of energy dependence is similar to p+p (no horn)
Onset of deconfinement: p+p data

Rates of increase of K^+ / π^+ and T change sharply in p+p collisions at SPS energies.

The fitted change energy is ≈ 7 GeV - close to the energy of the onset of deconfinement ≈ 8 GeV.

Resonance-string model (UrQMD) fails to reproduce data.
Study of the onset of deconfinement: Flow
Directed flow v_1 is considered to be sensitive to 1st order phase transition (softening of EOS). Expected: non-monotonic behavior (positive→negative→positive) of proton dv_1/dy as a function of beam energy - “collapse of proton flow”

Predictions of hydrodynamical model:

Directed flow measured by NA49 at middle SPS energy (“anti-flow” of protons at mid-rapidity):
Centrality dependence of dv_1/dy in Pb+Pb at $\sqrt{s_{NN}} = 7.6$ GeV

NA61/SHINE fixed target setup → tracking and particle identification over wide rapidity range

Flow coefficients are measured relative to the spectator plane estimated with Projectile Spectator Detector (PSD) → unique for NA61/SHINE

Close to mid-rapidity (-0.2 < y < 0.8)
- slope of pion v_1 is negative for all centralities
- slope of proton v_1 changes sign at centrality of about 50%

More NA61/SHINE flow results:
Klochkov, Selyuzhenkov (QM2018 talk)
Proton directed flow vs rapidity

No evidence for the collapse of proton directed flow in Pb+Pb at 13A GeV/c

Directed flow measured by NA49 at middle SPS energy ("anti-flow" of protons at mid-rapidity):

- Central
- Mid-central
- Peripheral
Spectator-induced electromagnetic effects

EM-repulsion of π^+ and attraction of π^- is the strongest for pions with rapidities close to spectator (beam) rapidity and with low p_T

First observation of spectator induced EM effects in small systems at SPS

Similar effect seen in intermediate centrality Ar+Sc (NA61/SHINE) and peripheral Pb+Pb (NA49)
Study of the onset of fireball
Onset of fireball: system size dependence

Change between $p+p \approx Be+Be$ and $Ar+Sc$, $Pb+Pb$ results

- $p+p$ data are corrected for experimental biases, systematic uncertainty ~ 0.1 [EPJ.C76:635]
- 0-1% $Be+Be$ data is uncorrected, experimental bias is $\sim 10-15$
- 0-0.2% $Ar+Sc$ data is uncorrected, experimental bias is $\sim 5-7$%
Search for critical point

Expected: non-monotonic behavior of CP signatures
Critical point: Proton intermittency as signal of CP

Second order phase transition → scale invariance → characteristic dependence of fluctuations on size δ of subdivision intervals of momentum space Δ

$M = \Delta/\delta$ – number of intervals

$$F_2(M) = \frac{\left\langle \frac{1}{M^2} \sum_{m=1}^{M^2} n_m(n_m-1) \right\rangle}{\left\langle \frac{1}{M^2} \sum_{m=1}^{M^2} n_m \right\rangle^2}$$

where:

n_m – particle number in bin i, $\langle \ldots \rangle$ - averaging over events

at critical point power law dependence is expected

$$F_2(M) = F_2(\Delta) M^{\phi_2}$$
Critical point: Proton intermittency in Ar+Sc and Be+Be at 150A GeV/c

Ar+Sc, 5-10%

Ar+Sc, 10-15%

Be+Be, 0-12%

\[M^2 \] – numbers of bins in \((p_x, p_y)\) space

\[F_2(M^2) \] moment are higher in data than in mixed events in Ar+Sc collisions - detailed investigation of significance of this result is in progress.

No signal visible in Be+Be.
Critical point: Strongly intensive measures $\Sigma[P_T,N]$

So far there are no prominent structures which could be related to critical point

System size dependence of $\Sigma[P_T,N]$ at 150/158A GeV/c: NA49 and NA61/SHINE points show consistent trends

Strangeness production in p+p at 158 GeV/c.

$K^*(892)^0$
$K^*(892)^0$ production in inelastic $p+p$ collisions

$K^*(892)^0$ p+p collisions can be described by HRG

\[<K^*(892)> = 0.03812 \pm 0.00538 \pm 0.00372 \]
System size dependence of $K^*(892)^0$ to K^\pm ratio at 158A GeV/c

Time between chemical and kinetic freeze-out (Δt):
- 3.8 ± 1.1 fm/c for $K^*(892)^0/K^+$
- 3.3 ± 1.2 fm/c for $K^*(892)^0/K^-$

Δt at SPS $>$ Δt at RHIC (2 ± 1 fm/c, STAR, PR C71, 064902, 2005) suggesting that:
- regeneration effects play significant role for higher energies
- regeneration may happen also at SPS \rightarrow obtained Δt is the lower limit of time between freeze-outs
Strangeness production in p+p at 158 GeV/c.
Ξ production
\(\Xi \) production in inelastic \(p+p \) collisions at 158 GeV/c
Ξ production in inelastic $p+p$ collisions at 158 GeV/c

UrQMD fails to describe Ξ^+ / Ξ^- ratio – known problem of string models

EPOS describes rapidity distributions of Ξ^+ , Ξ^- and their ratio, but not shape of transverse momentum spectrum.
Strangeness production in p+p at 158 GeV/c.
Search for Ξ^-(1860) pentaquark
\(\Xi^-(1860) \) pentaquark search in NA61/SHINE - motivation

NA49 indication for \(\Xi^- (1860) \) pentaquark

(NA49, PRL 92, 042003, 2004)

Anti-decuplet of baryons (\(J^P = 1/2^+ \))
predicted in chiral soliton model
Diakonov, Petrov, Polyakov, ZP A359, 305, 1997

\[\Xi^- \pi^- \]
\[\Xi^- \pi^+ \]
\[\Xi^+ \pi^- \]
\[\Xi^+ \pi^+ \]
\(\Xi^- (1860) \) pentaquarks search in NA61/SHINE

NA49:
- 6M events
- resonance with mass of \(1.862^{+/-0.002} \) GeV/c\(^2\)
- width below the detector resolution.
- the significance was estimated to be 4.0 sigma.

NA61/SHINE:
- 33M events
- Same analysis as NA49
- No \(\Xi^- (1860) \) pentaquark signal
- \(\Xi (1530) \) well visible
NA61/SHINE beyond 2020
NA61/SHINE program for 2021-2024

- What is the mechanism of open charm production?
- How does the onset of deconfinement impact open charm production?
- How does the formation of quark gluon plasma impact J/ψ production?

To answer these questions mean number of charm quark pairs, $\langle c\bar{c}\rangle$, produced in A+A collisions has to be known. Up to now corresponding experimental data does not exist and only NA61/SHINE can perform this measurement in the near future.
Detector upgrade during LS2

Construction of Vertex Detector (VD) for D^0, \bar{D}^0 decay reconstruction

Replacement of the TPC read-out electronics to increase data rate to 1 kHz

New trigger and data acquisition system

New Time-of-Flight detectors

Upgrade of Projectile Spectator Detector

See D. Tefelski Thursday
Summary

• 2D scan in system size and collision energy was completed in 2017 with Xe+La data

• Analysis ongoing for p+p, Be+Be, Ar+Sc, Xe+La and Pb+Pb data

• No horn in Ar+Sc collisions

• Unexpected system size dependence: (p+p ≈ Be+Be) ≠ (Ar+Sc ≠ Pb+Pb)

• No convincing indication of CP, proton intermittency signal in Ar+Sc is under scrutiny

• No $\Xi^-(1860)$ pentaquark signal in p+p at 158 GeV/c

• Plans to extend NA61/SHINE program with measurements of open charm production in 2021-2024
Critical point: Strongly intensive measures Δ and Σ

\[
\Delta[P_T, N] = \frac{1}{\omega[P_T]} \langle N \rangle \omega[P_T] - \langle P_T \rangle \omega[N] \\
\Sigma[P_T, N] = \frac{1}{\omega[P_T]} \langle N \rangle \omega[P_T] + \langle P_T \rangle \omega[N] - 2 \left(\langle P_T N \rangle - \langle P_T \rangle \langle N \rangle \right)
\]

\[
\omega[P_T] = \frac{\langle P_T^2 \rangle - \langle P_T \rangle^2}{\langle P_T \rangle} \\
\omega[P_T] = \frac{\overline{P_T^2} - \langle P_T \rangle^2}{\langle P_T \rangle} \\
\omega[N] = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}
\]

$\Delta = \Sigma = 0$ for no fluctuations

$\Delta = \Sigma = 1$ for Independent Particle Model

- $\Delta[P_T, N]$ uses only first two moments: $\langle N \rangle, \langle P_T \rangle, \langle P_T^2 \rangle, \langle N^2 \rangle$
- $\Sigma[P_T, N]$ uses also correlation term: $\langle P_T N \rangle - \langle P_T \rangle \langle N \rangle$

thus Δ and Σ can be sensitive to several physics effects in different ways
Motivation of K^* measurement

K^* lifetime ($\approx 4 \text{ fm/c}$) comparable with time between freeze-outs →

Some resonances may decay inside fireball; momenta of their decay products can be modified due to elastic scatterings → problems with experimental reconstruction of resonance via invariant mass →

Suppression of observed K^* yield

Assuming no regeneration processes (Fig.) time between freeze-outs can be determined from (STAR, PR C71, 064902, 2005):

$$ \frac{K^*}{K} \text{(kinetic)} = \frac{K^*}{K} \text{(chemical)} \cdot e^{-\frac{\Delta t}{\tau}} $$

use Pb+Pb or Au+Au ratio use p+p ratio

Δt – time between kinetic and chemical freeze-outs

τ – $K'(892)^0$ lifetime = 4.17 fm/c; PDG, PR D98, 030001, 2018
π^- spectra from 2D-scan

π^- spectra measured in large acceptance: p_T down to 0, in full forward hemisphere

- Rapidity spectra \approx gaussian, independently of collision energy and system size
- Large acceptance allows to obtain 4π multiplicity (Eur.Phys.J C74 (2014) no.3, 2794)
- m_T spectra in $p+p$ are exponential, in larger systems (central collisions) deviate from the exponential shape
Onset of deconfinement: kink

The increase of $\langle \pi \rangle/\langle W \rangle$ with collision energy is stronger for heavier than for lighter systems at high SPS energies.

Statistical model with phase transition (SMES - Acta Phys. Pol. B30 (1999) 2705) predicts a steepening of the rate of increase – KINK – of $\langle \pi \rangle/\langle W \rangle$ in QGP due to the larger number of degrees of freedom in comparison to HRG.

$\langle \pi \rangle$ – mean multiplicity in full acceptance
$\langle W \rangle$ – mean number of wounded nucleons
Clear mass hierarchy of v_2 - radial flow

Difference between v_2 for π^+ and π^- is small

Significant mass dependence of v_1

Difference between v_1 for π^+ and π^- is sensitive to electromagnetic effects.