

Recent results from NA61/SHINE

Szymon Puławski for NA61/SHINE

Outline

Introduction

• Summary

Fixed target experiment located at the CERN SPS accelerator

Beams:

- ions (Be, Ar, Xe, Pb)
 - p_{beam} =13A–150A GeV/c
- hadrons (п, К, р)
 *p*_{beam}=13–400 GeV/*c*
- $\sqrt{s_{NN}} = 5.1 16.8$ (27.4) GeV

Large acceptance hadron spectrometer –

coverage of the full forward hemisphere, down to $p_{\rm T} = 0$

NA61/SHINE performed the 2D scan in **collision energy and system size** to study the phase diagram of strongly interacting matter

Uniqueness of heavy ion results from NA61/SHINE

5

Study of the onset of deconfinement: Particle production properties

Onset of deconfinement: step and horn

See P. Podlaski Tuesday

Plateau – **STEP** – in the inverse slope parameter T of m_T spectra in Pb+Pb collisions observed at SPS energies. This is expected for the onset of deconfinement due to mixed phase of HRG and QGP (SMES).

Qualitatively similar energy dependence is seen in p+p, Be+Be and Pb+Pb collisions

Magnitude of T in Be+Be slightly higher than in p+p

Ar+Sc results between p+p/Be+Be and Pb+Pb

Onset of deconfinement: horn

See P. Podlaski Tuesday

Rapid changes in K⁺/ π^+ – **HORN** – were observed in Pb+Pb collisions at SPS energies. This was predicted (SMES) as a signature of onset of deconfinement.

Plateau like structure visible in p+p

Be+Be close to p+p

Ar+Sc is higher than p+p but form of energy dependence is similar to p+p (no horn)

Onset of deconfinement: p+p data

Rates of increase of K^+/π^+ and T change sharply in p+p collisions at SPS energies

The fitted change energy is ≈7 GeV close to the energy of the onset of deconfinement ≈8 GeV

Resonance-string model (UrQMD) fails to reproduce data

Study of the onset of deconfinement: Flow

Directed flow and the onset of deconfinement

Directed flow v₁ is considered to be **sensitive to 1**st **order phase transition** (softening of EOS). Expected: **non-monotonic behavior** (positive \rightarrow negative \rightarrow positive) **of proton dv**₁ /dy as a function of beam energy - "collapse of proton flow"

Centrality dependence of dv_1/dy in Pb+Pb at $\sqrt{s_{NN}}$ = 7.6 GeV

NA61/SHINE fixed target setup \rightarrow tracking and particle identification over wide rapidity range

Flow coefficients are measured relative to the spectator plane estimated with. Projectile Spectator Detector (PSD) \rightarrow unique for NA61/SHINE

Close to mid-rapidity (-0.2 < y < 0.8)

- slope of pion v_1 is negative for all centralities

- slope of proton v₁ changes sign at centrality of about 50%

> More NA61/SHINE flow results: Klochkov, Selyuzhenkov (QM2018 talk)

Proton directed flow vs rapidity

No evidence for the collapse of proton directed flow in Pb+Pb at 13A GeV/c

Directed flow measured by NA49 at middle SPS energy ("anti-flow" of protons at mid-rapidity):

Spectator-induced electromagnetic effects

EM-repulsion of π^+ and attraction of π^- is the strongest for pions with rapidities close to spectator (beam) rapidity and with low p_{T}

First observation of spectator induced EM effects in small systems at SPS

Similar effect seen in intermediate centrality Ar+Sc (NA61/SHINE) and peripheral Pb+Pb (NA49)

Study of the onset of fireball

Change between p+p ≈ Be+Be and Ar+Sc, Pb+Pb results

- p+p data are corrected for experimental biases, systematic uncertainty ~0.1 [EPJ.C76:635]

- 0-1% Be+Be data is uncorrected, experimental bias is ~10-15%

- 0-0.2% Ar+Sc data is uncorrected, experimental bias is ~5-7%

Search for critical point

Expected: non-monotonic behavior of CP signatures

Second order phase transition \rightarrow scale invariance \rightarrow characteristic dependence of fluctuations on size δ of subdivision intervals of momentum space Δ

 $M = \Delta/\delta$ – numer of intervals

$$F_{2}(M) = \frac{\left\langle \frac{1}{M^{2}} \sum_{m=1}^{M^{2}} n_{m}(n_{m}-1) \right\rangle}{\left\langle \frac{1}{M^{2}} \sum_{m=1}^{M^{2}} n_{m} \right\rangle^{2}}$$

where:

 n_m – particle number in bin i,

<...> - averaging over events

at critical point power law dependence is expected

 $F_2(M) = F_2(\Delta) M^{\varphi_2}$

Critical point: Proton intermittency in Ar+Sc and Be+Be at 150A GeV/c

 M^2 – numbers of bins in (p_x , p_y) space

 $F_2(M^2)$ moment are higher in data than in mixed events in Ar+Sc collisions detailed investigation of significance of this result is in progress

No signal visible in Be+Be.

Critical point: Strongly intensive measures $\Sigma[P_T, N]$

System size dependence of $\Sigma[P_T,N]$ at 150/158A GeV/c: NA49 and NA61/SHINE points show consistent trends

So far there are no prominent structures which could be related to critical point

Eur.Phys.J. C77 (2017) no.2, 59, CERN-SPSC-2018-029

Strangeness production in p+p at 158 GeV/*c*. K*(892)⁰

K^{*}(892)⁰ production in inelastic p+p collisions

See A. Tefelska Thursday

15

K*(892)⁰ p+p collisions can be described by HRG

HRG by F.Becattini et al. (PR C73, 044905, 2006)

 Fit B; uses "standard" γs; for p+p Ξ and Ω baryons excluded from fit

10

 Fit A: γs replaced (ss̄); for p+p φ meson excluded from fit

5

HRG by V.Begun et al. (arXiv:1805.01901) p+p: GCE with meson ϕ included 20

√s_{nn}

System size dependence of K*(892)⁰ to K[±] ratio at 158*A* GeV/*c*

NA61/SHINE K^{+/-} (p+p): EPJC 77, 671, 2017 NA49 K^{*}: PR C84, 064909, 2011 NA49 K^{+/-} (p+p): EPJC 68, 1, 2010 NA49 K^{+/-} (C+C, Si+Si): PRL 94, 052301, 2005 NA49 K^{+/-} (Pb+Pb): PR C66, 054902, 2002 \rightarrow rescaled from 5% to 23.5% most central

Time between chemical and kinetic freeze-outs (Δt):

- 3.8 ± 1.1 fm/c for K*(892)⁰/K+
- 3.3 ± 1.2 fm/c for K*(892)⁰/K⁻

 $\Delta t \text{ at SPS} > \Delta t \text{ at RHIC (2±1 fm/c, STAR, PR C71, 064902, 2005) suggesting that:$

- regeneration effects play significant role for higher energies
- regeneration may happen also at SPS → obtained Δt is the lower limit of time between freeze-outs

Strangeness production in p+p at 158 GeV/*c*. E production

Ξ production in inelastic p+p collisions at 158 GeV/*c*

Ξ production in inelastic p+p collisions at 158 GeV/*c*

Strangeness production in p+p at 158 GeV/c. Search for $\Xi^{--}(1860)$ pentaquark

E^{--} (1860) pentaquark search in NA61/SHINE - motivation

$\Xi^{--}(1860)$ pentaquarks search in NA61/SHINE

NA49: NA49, PRL 92, 042003, 2004

JEN

- 6M events
- resonance with mass of 1.862+/-0.002 GeV/c^2
- width below the detector resolution.
- the significance was estimated to be 4.0 sigma.

NA61/SHINE:

- 33M events
- Same analysis as NA49
- No E⁻⁻(1860) pentaquark signal
- E(1530) well visable

NA61/SHINE beyond 2020

NA61/SHINE program for 2021-2024

• What is the mechanism of open charm production?

Poster A. Merzlaya

See D. Tefelski

Thursday

- How does the onset of deconfinement impact open charm production?
- How does the formation of quark gluon plasma impact J/ψ production?

To answer these questions mean number of charm quark pairs, $\langle c\bar{c} \rangle$, produced in A+A collisions has to be known. Up to now corresponding experimental data does not exist and only NA61/SHINE can perform this measurement in the near future.

Foreseen NA61/SHINE resolution is sufficient to answer addressed questions

Detector upgrade during LS2

Summary

- 2D scan in system size and collision energy was completed in 2017 with Xe+La data
- Analysis ongoing for p+p, Be+Be, Ar+Sc, Xe+La and Pb+Pb data
- No horn in Ar+Sc collisions
- Unexpected system size dependence: (p+p ≈ Be+Be) ≠ (Ar+Sc ≠ Pb+Pb)
- No convincing indication of CP, proton intermittency signal in Ar+Sc is under scrutiny
- No *E*⁻⁻(1860) pentaquark signal in p+p at 158 GeV/c
- Plans to extend NA61/SHINE program with measurements of open charm production in 2021-2024

Critical point: Strongly intensive measures Δ and Σ

$$\Delta[P_T, N] = \frac{1}{\omega[p_T]\langle N \rangle} [\langle N \rangle \omega[P_T] - \langle P_T \rangle \omega[N]] \qquad P_T = \sum_{i=1}^N p_{Ti}$$
$$\Sigma[P_T, N] = \frac{1}{\omega[p_T]\langle N \rangle} [\langle N \rangle \omega[P_T] + \langle P_T \rangle \omega[N] - 2(\langle P_T N \rangle - \langle P_T \rangle \langle N \rangle)]$$

$$\omega[P_T] = \frac{\langle P_T^2 \rangle - \langle P_T \rangle^2}{\langle P_T \rangle} \qquad \omega[p_T] = \frac{\overline{p_T^2} - \overline{p_T}^2}{\overline{p_T}} \qquad \omega[N] = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}$$

 $\Delta = \Sigma = 0$ for no fluctuations

 $\Delta = \Sigma = 1$ for Independent Particle Model

- Δ [P_T, N] uses only first two moments: $\langle N \rangle, \langle P_T \rangle, \langle P_T^2 \rangle, \langle N^2 \rangle$
- $\Sigma[P_T, N]$ uses also correlation term: $\langle P_T N \rangle - \langle P_T \rangle \langle N \rangle$

thus Δ and Σ can be sensitive to several physics effects in different ways

Expected: non-monotonic behavior of CP signatures

Motivation of K^{*} measurement

The picture assumes that conditions at chemical freeze-out of p+p and Pb+Pb are the same K^{*} lifetime (\approx 4 fm/c) comparable with time between freeze-outs \rightarrow

Some resonances may decay inside fireball; momenta of their decay products can be modified due to elastic scatterings \rightarrow problems with experimental reconstruction of resonance via invariant mass \rightarrow

Suppression of observed K* yield

Assuming no regeneration processes (Fig.) time between freeze-outs can be determined from (STAR, PR C71, 064902, 2005):

 Δt – time between kinetic and chemical freeze-outs $\tau - K^*(892)^0$ lifetime = 4.17 fm/c; PDG, PR D98, 030001, 2018

π^{-} spectra from 2D-scan

π^- spectra measured in large acceptance: p_T down to 0, in full forward hemisphere

- Rapidity spectra ≈ gaussian, independently of collision energy and system size
- Large acceptance allows to obtain 4π multiplicity (Eur.Phys.J. C74 (2014) no.3, 2794)
- *m*_T spectra in p+p are exponential, in larger systems (central collisions) deviate from the exponential shape

Onset of deconfinement: kink

 $<\pi$ > – mean multiplicity in full acceptance <W> – mean number of wounded nucleons

The increase of $\langle \pi \rangle \langle W \rangle$ with collision energy is stronger for heavier than for lighter systems at high SPS energies

Statistical model with phase transition (SMES - Acta Phys. Pol. B30 (1999) 2705) predicts a steepening of the rate of increase – **KINK** – of $<\pi>/<W>$ in QGP due to the larger number of degrees of freedom in comparison to HRG.

Particle type dependence of elliptic and directed flow

Clear mass hierarchy of v_2 - radial flow

Difference between v_2 for π^+ and π^- is small

Significant mass dependence of v₁

Difference between v_1 for π + and π ⁻ is sensitive to electromagnetic effects. A. Rybicki and A. Szczurek, Phys. Rev. C87, 054909 (2013)