

The 18th International Conference on **Strangeness in Quark Matter (SQM 2019)** 10-15 June 2019, Bari (Italy)

Recent results on Light Flavor from STAR

Jie Zhao (for the STAR collaboration) June 11 2019

Purdue University

SQM2019, Italy

STA

J. Zhao

Introduction

p+p, p+AI, p+Au, d+Au, 3He+Au, Cu+Cu, Cu+Au, Ru+Ru, Zr+Zr, Au+Au, U+U

- QCD at high energy density/temperature
- Properties of QGP, EoS

Beam Energy Scan Au+Au √S_{NN}= 7.7-62 GeV

- QCD phase transition
- Search for the critical point
- Turn-off of QGP signatures

Fixed-Target Program

Au+Au √S_{NN}= 3.0-7.7 GeV

 High baryon density regime with µ_B~420-720 MeV

- Initial conditions: flow results
- Phase transition and critical point:
 - $v_{1,}$ net fluctuations, deuteron, triton, strangeness
- > Hypertriton
- Medium effect and dynamics:

 K^{*0} and ϕ , low-p_T dilepton

Chirality, vorticity and polarization effects:

	Initial conditions: flow results
	Phase transition and critical point:
	$v_{1,}$ net fluctuations, deuteron, triton, strangeness
	Hypertriton
\succ	Medium effect and dynamics:
	K^{*0} and ϕ , low-p _T dilepton
\succ	Chirality, vorticity and polarization effects:
	Λ polarization, CME

Flow and Fluctuations in Multiple Systems

Collectivity in Small Systems

- Different V_{2,2} from different methods to correct for non-flow background in p/d+Au collisions, positive v₂ at high multiplicity
- \succ v₂ from subtraction method is negative at lower collision energies
- \succ v₂ from template fit increases with multiplicity
- Initial state effect vs. final state effect? Hydrodynamics or anisotropic escape?

Longitudinal Flow Decorrelation

- Stronger longitudinal flow decorrelation at RHIC than at LHC
- Hydrodynamic calculations can not simultaneously describe LHC and RHIC

Initial conditions: flow results
Phase transition and critical point:
v _{1,} net fluctuations, deuteron, triton, strangeness
Hypertriton
Medium effect and dynamics:
K^{*0} and ϕ , low-p _T dilepton
Chirality, vorticity and polarization effects:
A polarization, CME

Higher moments

Mapping the **freeze-out curve** and probing the possible **critical point** through fluctuations of conserved quantum numbers:

New measurements of net-proton cumulants for Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 54.4 GeV

The C_6/C_2 for central Au+Au collisions at 54.4 GeV is positive while that for 200 GeV is negative (with large uncertainties). These have consequences vis-à-vis chiral criticality in QCD.

Higher moments of Net-A distributions

1.02

1.01

0.99

0.98

0.97

0.96

0

The net-Lambda cumulant ratios can be described by the latest HRG model, no non-monotonic behavior vs. energy The net-Lambda variance vs. y: small deviations from NBD for larger rapidity coverage, could be attributed to the effect of baryon number and strangeness conservation

0.1

 Δ y / Δ y $_{\rm beam}$

Au + Au, 0-5% central collisions

 $0.9 < p_{\tau} (GeV/c) < 2.0$

0.05

Rene Bellwied's talk

-+ 19.6 GeV, data

200 GeV, data

0.15

0.2

19 GeV, 1 - ($\alpha_{s} + \alpha_{p}$)

200 GeV, 1 - $(\alpha_{s} + \alpha_{p})$

works if B and S conservation are treated additive

Directed Flow (v₁)

STAR, Phys. Rev. Lett. 112 (2014) 162301

Probe of the softening of the Equation of State
> strong softening: consistent with the 1st-order phase transition
> weaker softening: more likely due to crossover

Directed Flow of Identified Particles

- 10 species & 8 energies allow a detailed study of constituent-quark v₁. In most cases, the coalescence picture works for both "produced" particles and "net" particles
- "Transported quark" v₁ has a local minimum at ~14.5 GeV

Fixed-Target Test Run for Au+Au at 4.5 GeV

• First πv_1 measurement in this energy range, v_1 slope turning up towards lower energies

• Dedicated FXT runs (3.0-7.7 GeV) in 2019+ to explore high baryon density regime

Coalescence Parameters – **B**₂ and **B**₃

 $B_2(\overline{d})$ are smaller than that of $B_2(d)$, indicate antibaryon freeze-out at a larger source. B_2 decreases with collision energy. A minimum at $\sqrt{s_{NN}} \sim 20$ GeV: change of EOS?! B_2 and $\sqrt{B_3}$ are consistent within uncertainties except 200 GeV.

STAR

Neutron Density Fluctuation

K. J. Sun, L. W. Chen, C. M. Ko, Z. Xu, Phys. Lett. B774, 103 (2017).K. J. Sun, L. W. Chen, C. M. Ko, J. Pu, Z. Xu, Phys. Lett. B781, 499 (2018).

➤ Neutron density fluctuation, Δn, shows a non-monotonic behavior on collision energy. Peak ~ 20 GeV

Strange hadron production

- Phase transition and critical point:
 - $v_{1,}$ net fluctuations, deuteron, triton, strangeness

> Hypertriton

Medium effect and dynamics:

 K^{*0} and ϕ , low-p_T dilepton

Chirality, vorticity and polarization effects:

(Anti-)Hypertriton Masses

Excellent S/B with HFT, precise determination of the binding energy:

 $m_d + m_{\Lambda} - m_{\Lambda}^3 = 0.44 \pm 0.10 \text{ (stat.)} \pm 0.15 \text{ (syst.)} \text{ MeV}$

- Providing insight on Hyperon-Nucleon interaction, thus neutron star structure
- > The mass difference between 3 H and anti- 3 H

 $(\Delta m/m)^{3}H = (1.0 \pm 0.9 \text{ (stat.)} \pm 0.7 \text{ (syst.)}) \times 10^{-4}$

is the first test of the CPT symmetry in the light hypernuclei sector

- Phase transition and critical point:
 - $v_{1,}$ net fluctuations, deuteron, triton, strangeness
- > Hypertriton
- Medium effect and dynamics:
 - K^{*0} and ϕ , low-p_T dilepton
- Chirality, vorticity and polarization effects:

 ϕ/K^{-} ratio is independent of centrality

Small hadronic interaction cross section for ϕ

- Dominance of hadronic re-scattering at RHIC and LHC
- More re-scattering in central collisions

Md. Nasim's talk

STA:

- Phase transition and critical point:
 - $v_{1,}$ net fluctuations, deuteron, triton, strangeness
- > Hypertriton
- Medium effect and dynamics:

 K^{*0} and ϕ , low-p_T dilepton

Chirality, vorticity and polarization effects:

A Global and Local Polarization

along beam direction

Chiral Magnetic Effect

H-J Xu, *etal*, CPC 42 (2018) 084103 J. Zhao, H. Li, F. Wang, Eur. Phys. J. C (2019) 79:168

> Invariant mass dep. of the $\Delta \gamma$

- Isolate possible CME signal in inclusive Δγ by different methods
- These estimates indicate: possible CME signal is small in inclusive Δγ, within 1-2σ from zero with the current precision

SQM2019, Italy

- Initial conditions: flow results
- Phase transition and critical point:
 - $v_{1,}$ net fluctuations, deuteron, triton, strangeness
- Hypertriton
- Medium effect and dynamics:

 K^{*0} and ϕ , low-p_T dilepton

Chirality, vorticity and polarization effects: