Recent results on Light Flavor from STAR

Jie Zhao (for the STAR collaboration)
June 11 2019

Purdue University
Introduction

RHIC Top Energy
p+p, p+Al, p+Au, d+Au, 3He+Au, Cu+Cu, Cu+Au, Ru+Ru, Zr+Zr, Au+Au, U+U
- QCD at high energy density/temperature
- Properties of QGP, EoS

Beam Energy Scan
Au+Au $\sqrt{S_{NN}} = 7.7-62$ GeV
- QCD phase transition
- Search for the critical point
- Turn-off of QGP signatures

Fixed-Target Program
Au+Au $\sqrt{S_{NN}} = 3.0-7.7$ GeV
- High baryon density regime with $\mu_B \sim 420-720$ MeV
Outline

- Initial conditions: flow results
- Phase transition and critical point:
 \(v_1 \), net fluctuations, deuteron, triton, strangeness
- Hypertriton
- Medium effect and dynamics:
 \(K^* \) and \(\phi \), low-\(p_T \) dilepton
- Chirality, vorticity and polarization effects:
 \(\Lambda \) polarization, CME
Outline

- **Initial conditions:** flow results
- Phase transition and critical point:
 - v_1, net fluctuations, deuteron, triton, strangeness
- Hypertriton
- Medium effect and dynamics:
 - K^*0 and ϕ, low-p_T dilepton
- Chirality, vorticity and polarization effects:
 - Λ polarization, CME
Flow and Fluctuations in Multiple Systems

Ratio of $v_n\{4\}/v_n\{2\}$ is sensitive to flow fluctuations. The ratio for elliptic flow depends on collision system while that for triangular flow is independent.

$v_2\{2\}$ scales with $\varepsilon_2\{2\}$ - similar viscous effect in these collisions.
Collectivity in Small Systems

- Different $V_{2,2}$ from different methods to correct for non-flow background in p/d+Au collisions, positive v_2 at high multiplicity
- v_2 from subtraction method is negative at lower collision energies
- v_2 from template fit increases with multiplicity
- Initial state effect vs. final state effect? Hydrodynamics or anisotropic escape?
Stronger longitudinal flow decorrelation at RHIC than at LHC.

Hydrodynamic calculations can not simultaneously describe LHC and RHIC data.
Outline

- **Initial conditions**: flow results
- **Phase transition and critical point**:
 - v_1, net fluctuations, deuteron, triton, strangeness
- **Hypertriton**
- **Medium effect and dynamics**:
 - K^* and ϕ, low-p_T dilepton
- **Chirality, vorticity and polarization effects**:
 - Λ polarization, CME
Higher moments

Mapping the **freeze-out curve** and probing the possible **critical point** through fluctuations of conserved quantum numbers:

New measurements of net-proton cumulants for Au+Au collisions at $\sqrt{s_{NN}} = 54.4$ GeV

The C_6/C_2 for central Au+Au collisions at 54.4 GeV is positive while that for 200 GeV is negative (with large uncertainties). These have consequences vis-à-vis chiral criticality in QCD.
Higher moments of Net-Λ distributions

Net-Lambda fluctuations provide a more complete strangeness proxy together with net kaons and compare with HRG predictions for sequential hadronization

The net-Lambda cumulant ratios can be described by the latest HRG model, no non-monotonic behavior vs. energy

The net-Lambda variance vs. y: small deviations from NBD for larger rapidity coverage, could be attributed to the effect of baryon number and strangeness conservation

works if B and S conservation are treated additive

Rene Bellwied’s talk

SQM2019, Italy J. Zhao
Directed Flow (v_1)

Probe of the softening of the Equation of State
- strong softening: consistent with the 1st-order phase transition
- weaker softening: more likely due to crossover
Directed Flow of Identified Particles

(N:\users\jzhao\atc\star\publications\STAR-DIR-2018-012.pdf)

10 - 40% Au+Au
STAR preliminary

\[(v_1)_{\text{trans.}u(d)} = \frac{[(v_1)_{\text{net}p} - (3 - N_{\text{trans.}u(d)})v_1(\bar{u}(\bar{d})]/N_{\text{trans.}u(d)} \]

\[N_{\text{trans.}u(d)} = 3\left[1 - \exp(-2\mu_{u(d)}/T_{ch})\right]/(1 - r_{\bar{p}/p}) \]

- 10 species & 8 energies allow a detailed study of constituent-quark \(v_1 \). In most cases, the coalescence picture works for both “produced” particles and “net” particles
- “Transported quark” \(v_1 \) has a local minimum at \(~14.5\) GeV
Fixed-Target Test Run for Au+Au at 4.5 GeV

- First π_1 measurement in this energy range, π_1 slope turning up towards lower energies
- Dedicated FXT runs (3.0-7.7 GeV) in 2019+ to explore high baryon density regime
$B_2(d)$ are smaller than that of $B_2(d)$, indicate antibaryon freeze-out at a larger source. B_2 decreases with collision energy. A minimum at $\sqrt{s_{NN}} \sim 20$ GeV: change of EOS?!

B_2 and $\sqrt{B_3}$ are consistent within uncertainties except 200 GeV.
Neutron density fluctuation, Δn, shows a non-monotonic behavior on collision energy. Peak ~ 20 GeV.
Strange hadron production

\[\langle m_T \rangle - m_0 \text{ of antibaryons and baryons significantly deviate from each other towards lower collision energies, especially for anti-}\Lambda \text{ and } \Lambda. \]

- The \(K_0^0 \) \(R_{CP} \) no suppression for \(p_T \) 3.5 GeV and particle type independence at \(\leq 11.5 \text{ GeV}. \)
- Partonic energy loss effect less significant at low energies. The cold nuclear matter effect take over?
- Further investigation of the deconfinement phase transition below 19.6 GeV
Outline

- **Initial conditions**: flow results
- **Phase transition and critical point**: v_1, net fluctuations, deuteron, triton, strangeness
- **Hypertriton**
- **Medium effect and dynamics**: K^*, ϕ, low-p_T dilepton
- **Chirality, vorticity and polarization effects**: Λ polarization, CME
(Anti-)Hypertriton Masses

- Excellent S/B with HFT, precise determination of the binding energy:
 \[m_d + m_\Lambda - m_\Lambda^3 = 0.44 \pm 0.10 \text{ (stat.)} \pm 0.15 \text{ (syst.) MeV} \]

- Providing insight on Hyperon-Nucleon interaction, thus neutron star structure

- The mass difference between \(_\Lambda^3\text{H} \) and anti-\(_\Lambda^3\text{H} \)

 \[
 (\Delta m/m)_{_\Lambda^3\text{H}} = (1.0 \pm 0.9 \text{ (stat.)} \pm 0.7 \text{ (syst.)}) \times 10^{-4}
 \]
 is the first test of the CPT symmetry in the light hypernuclei sector

STAR, arXiv:1904.10520
Outline

- Initial conditions: flow results
- Phase transition and critical point:
 - v_1, net fluctuations, deuteron, triton, strangeness
- Hypertriton
- Medium effect and dynamics:
 - K^* and ϕ, low-p_T dilepton
- Chirality, vorticity and polarization effects:
 - Λ polarization, CME
Highlights from STAR

Zhenyu Ye for the STAR Collaboration

University of Illinois at Chicago

J. Zhao

SQM2019, Italy

K*0 and φ resonance production

- K*0/K- decreases with centrality
- φ/K- ratio is independent of centrality

- Dominance of hadronic re-scattering at RHIC and LHC
- More re-scattering in central collisions

Small hadronic interaction cross section for φ

- More re-scattering in central collisions
Low-\(p_T\) \(e^+e^-\) enhancement

Can not be explained by in-medium broadened \(\rho\) model

Compared to hadronic production, excess yield exhibits a much weaker centrality dependence

Need additional source(s)

Initial magnetic field?

May provide insights on the chiral effects?
Outline

- Initial conditions: flow results
- Phase transition and critical point:
 - v_1, net fluctuations, deuteron, triton, strangeness
- Hypertriton
- Medium effect and dynamics:
 - K^* and ϕ, low-p_T dilepton
- Chirality, vorticity and polarization effects:
 - Λ polarization, CME
- First observation of finite Λ global polarization at 200 GeV
- First observation of quadrupole structure of Λ local polarization along beam direction
H-J Xu, et al., CPC 42 (2018) 084103

- **ψ_{PP}(TPC) vs. ψ_{RP}(ZDC)**

- **Invariant mass dep. of the Δγ**

- **Isolate possible CME signal in inclusive Δγ by different methods**

- **These estimates indicate:**
 - possible CME signal is small in inclusive Δγ, within 1-2σ from zero with the current precision

STAR preliminary

Au+Au \(\sqrt{s_{NN}} = 200 \text{ GeV (20-50%)} \)

- \(\psi_{RP}/\psi_{PP} \) (TPC full)
- \(\psi_{RP}/\psi_{PP} \) (TPC sub-evt)
- \(m_{inv} > 1.5 \text{ GeV/c}^2 \) (TPC full)
- Low \(m_{inv} \) + ESE (TPC sub-evt)

Possible CME Δγ / inclusive Δγ

SQM2019, Italy

J. Zhao

24
Summary

- Initial conditions: flow results

- Phase transition and critical point:
 \[\nu_1, \text{net fluctuations, deuteron, triton, strangeness} \]

- Hypertriton

- Medium effect and dynamics:
 \[K^{*0} \text{ and } \phi, \text{ low-}p_T \text{ dilepton} \]

- Chirality, vorticity and polarization effects:
 \[\Lambda \text{ polarization, CME} \]