Recent results in small systems from CMS

Prabhat R. Pujahari
on behalf of the CMS experiment

Indian Institute of Technology Madras

SQM 2019
The 18th International Conference on Strangeness in Quark Matter, 10-15 June
Large vs. small at the LHC

Pb-Pb
$\sqrt{s_{NN}} = 2.76$ TeV
$\sqrt{s_{NN}} = 5.02$ TeV

Xe-Xe
$\sqrt{s_{NN}} = 5.44$ TeV

p-Pb
$\sqrt{s_{NN}} = 5.02$ TeV
$\sqrt{s_{NN}} = 8$ TeV

pp
$\sqrt{s} = 2.76$ TeV
$\sqrt{s} = 5.02$ TeV
$\sqrt{s} = 7$ TeV
$\sqrt{s} = 8$ TeV
$\sqrt{s} = 13$ TeV

Strangeness in pp, pPb and PbPb collisions

CMS = 7 TeV)
(-1) 6.2 pb $= 5.02$ TeV)NN
s((-1) 35 nb $= 2.76$ TeV)NN
s((-1) $b\mu^{2.3}$ trk offline N_{10^2}

Higher transverse kinematic energy
\mathcal{h}_{KE} at higher multiplicities
for all systems

Faster increase
for heavier particles and smaller systems

Mass ordering also seen in v_2 in pp

E. Chapon (CERN)

Recent results from CMS

PLB 768, 103

PLB 765, 193

Parallel: Hong Ni, Thu 12:10

SQM 2017 17 / 19
What are ‘small’ systems?

‘Small’ qualifies the size of the colliding systems and/or the created medium

- **Traditional POV:** a priori too small to show characteristics of QGP physics
- **Alternative POV:** individual events show high particle multiplicity, energy density, etc
Main topics discussed in this talk:

Looking at the observables (there might be a personal bias!):

- Collective phenomena:
 - p_T spectra, Fourier harmonics, event by event fluctuations,…

- Quarkonia and more hints for final state effects

- Cross section & Nuclear modification factors

Flavours in CMS:-

- **Light flavours**, strange and multi-strange hadrons
- **Heavy flavours**, charm and beauty: quarkonia, open HF
Strangeness in hadronic collisions

Probing collectivity with multiplicity

Hydrodynamic Blast-Wave model:

- Characterize spectral shapes and test collective radial flow
- Spectra from thermal sources T_{kin} expanding with common velocity $<\beta_T>$

- Higher $<K_{E_T}>$ at higher multiplicities for all systems
- Faster increase for heavier particles and smaller systems
- Particle species dependence of $<K_{E_T}>$ is larger in small systems compared to Pb-Pb

Puzzle:
Onset of collectivity!
Blast-Wave fit parameters:

- Model dependent meaning of T_{kin} and $\langle \beta_T \rangle$
- p-p and p-Pb show similar features as of Pb-Pb
- Large radial flow velocity in small systems:

$$\langle \beta_T \rangle_{pp} \ > \ \langle \beta_T \rangle_{pPb} \ > \ \langle \beta_T \rangle_{PbPb}$$
Strangness in hadronic collisions

Blast-Wave fit parameters:

- Model dependent meaning of T_{kin} and $\langle \beta_T \rangle$
- p-p and p-Pb show similar features as of Pb-Pb
- Large radial flow velocity in small systems:

 $$\langle \beta_T \rangle_{pp} > \langle \beta_T \rangle_{pPb} > \langle \beta_T \rangle_{PbPb}$$

Several hints for collectivity from single particle spectra

Complementary information from two-particle correlations

PLB 768 (2017) 103
‘Ridge’: the small system puzzle

Long-range \((2 < |\Delta \eta| < 4)\), **near-side** \((\Delta \phi \approx 0)\) angular correlations in high multiplicity p-p and p-Pb collisions

Is this a sign of hydro in small systems?
Is it collective in small systems?
Nature of the Ridge

PLB 765 (2017) 193

Collectivity from large to small systems

\[v_2 \{4, 6, 8\}: \]
- Similar for p-p and p-Pb: fluctuation-driven geometry
- Pb-Pb larger: accounted by average elliptic geometry

\[\text{Basar, Teeny, arXiv:1408.3411} \]

- Multi-particle correlation
- Similar patterns for all systems
- Evidence of collectivity in p-Pb system!
Further proof of collectivity: geometry driven phenomena

First measurement of $v_3\{4\}$ in p-Pb collisions

More sensitive to initial state fluctuations

• Data & hydrodynamics-motivated fluctuation-driven IS calculations are in agreement

Prediction: \[
\frac{v_2\{4\}}{v_2\{2\}} = \frac{v_3\{4\}}{v_3\{2\}}
\]
Evidence for geometry driven

Prediction confirmed in p-Pb!

\[\frac{v_2\{4\}}{v_2\{2\}} = \frac{v_3\{4\}}{v_3\{2\}} \]

Similar in p-Pb and PbPb

Small systems: evidence for fluctuation-driven initial state geometry
Correlation between harmonics

Study correlation between harmonics \((n, m)\):

- Via Symmetric Cumulant:
 \[SC(n,m) = \langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle \]
- Based on 4-particle cumulant calculations

Sensitive to:

- Initial State fluctuations \((v_2 \text{ vs. } v_3)\)
- Medium transport coefficient \((v_2 \text{ vs. } v_4)\)

Results from Pb-Pb:

- \(v_2, v_4\) correlated
- \(v_2, v_3\) anti-correlated

PRL 117 (2016) 182301
PRL 120 (2018) 092301

Figure: Graph showing the correlation between \(v_2\) and \(v_4\) versus \(v_2\) and \(v_3\) for Pb-Pb collisions.
Correlation between harmonics: the small system case

Similarities observed for SCs in all systems

- (v_2, v_3) anti-correlated
- (v_2, v_4) correlated
- Small energy dependence (see p-Pb results)

![Graph showing correlation between harmonics](image)

PRL 120 (2018) 092301
Correlation between harmonics: the small system case

Similarities observed for SCs in all systems

专业知识点1: \((v_2, v_3) \) anti-correlated

专业知识点2: \((v_2, v_4) \) correlated

专业知识点3: Small energy dependence (see p-Pb results)

In general: \(v_n(p-p) \neq v_n(p-Pb) \neq v_n(Pb-Pb) \)

⇒ Normalization needed for comparison

PRL 120 (2018) 092301
Normalized SCs (NSCs)

arXiv: 1905.09935
PRL 120 (2018) 092301

- Similar behaviour in p-Pb and Pb-Pb
- Points to similar IS fluctuations

Common paradigm?

- Ordering observed:
 - p-p > p-Pb > Pb-Pb
 - What is the origin?

Need of further non-flow suppression!
SCs with sub-events

- Non-flow suppressed at low multiplicities
- Similar results at high multiplicities for SC(2,3)
- Different results between *no-* and *n-subevents* for SC(2,4) at high multiplicities
 - SC(2,4) has a greater sensitivity to non-flow
Strange hadrons flow in small systems

- Significant v_2 signal. Follow mass ordering at low p_T (radial flow)
- Similar pattern for all systems? Similar origin?

Reminiscent of A-A observation!
Heavy quark collectivity in small systems

PRL 121 (2018) 082301

PbPb 8.16TeV

CMS

\[v_2^{D^0} \text{ is similar to } v_2^{K_S^0} \text{ at higher } p_T \]

\[\text{May be some indication of } v_2(c) < v_2(u,d,s) \]?
What does NCQ scaling tell us?

Constituent quark number scaling: PRL 121 (2018) 082301

Small system:
- Shrink system size: $N_{\text{trk}} \sim 900 \rightarrow N_{\text{trk}} \sim 200$
- D^0 v_2 consistently lower: $v_2(c) < v_2(u,d,s)$
 - **Hydro like**: less flow/thermalization for charm quarks in p-Pb due to a much reduced small system size?
Charmonia can be sensitive to additional effects:
- Recombination of cc pairs
- Initial correlation from Plasma

Small systems:
$v_2 (c) < v_2 (u,d,s) \Rightarrow v_2 (J/\psi) < v_2(D^0)$?

- Large v_2 observed for charm quark
- Similar magnitude for (J/ψ) and D^0
- Smaller than light flavour hadrons at low p_T
- The observed pattern is similar to A-A
- Uncertainties are still large
OK… what’s the problem?

(Surprisingly!?) large \(J/\psi \) \(v_2 \) signal

Final state interaction alone cannot explain this

LHC data. We are therefore forced to conclude that this signal must be in large part due to initial-state (or pre-equilibrium) effects not included in our approach. This situation
Heavy flavour: nuclear modification factors

Prompt J/\(\psi\) in pp and pPb:

- Small modification in p-Pb collisions
- \(R_{FB}\) shows a significant decrease for increasing \(y_{CM}\)

Role of Cold Nuclear Matter (CNM) effects!
• Higher suppression of the excited state ($\psi(2s)$) than the ground state (J/ψ) both in p-Pb and Pb-Pb collisions
• Points to different nuclear effects in the production of $\psi(2s)$ compared to J/ψ
The excited \(\Upsilon \) states are suppressed but any bias? — normalise to \(Z^0 \)

\(J/\psi \) to \(\Upsilon(1S) \) ratio vs. \(N_{\text{trk}} \) — suppress or enhance?
Summary

Collectivity in small systems

- Particle mass dependence of p_T spectra
- Non-zero collective flow from multi-particle correlations
- Strong evidence for initial-geometry driven flow harmonics in HM ($N_{\text{trk}} > 100$) via high precision measurements

Heavy flavour

- Significant D^0 and J/ψ elliptic flow measured in small system
- **QGP hypothesis:** D^0 results indicates less thermalized charm
- Intriguing results for J/ψ

New opportunity ahead from higher statistics, more ion species and better instrumentations

— *Stay tuned!*
Topics I couldn’t cover in this talk

•Jets and their modifications
•Open heavy flavour observables
•Vector bosons and constraints on nPDF
•Exclusive vector-meson photo production
•… and many more
• ‘Recent results on heavy flavour from CMS’
 — Russian Chistov

• ‘Recent results in small systems from CMS’
 — Prabhat Pujahari

• ‘CMS upgrade plan for high-luminosity era and outlook on heavy-quark production in nuclear collisions’
 — Byungsik Hong

• ‘Λc production in pp and PbPb collisions with the CMS detector’
 — Rui Xiao

• ‘Strange and non-strange charm production in pp and PbPb collisions’
 — Cheng-Chieh Peng

• ‘Measurement of strange and non-strange beauty production in PbPb collisions’
 — Fuqiang Wang

• ‘Bottomonium production in pp, pPb and PbPb collisions’
 — Daniele Fasanella

• ‘Study of jet fragmentation in J/ψ and D mesons with CMS’
 — Xiao Wang

Don’t miss all the fun & excitement! 😊