"Snowballs from hell":

light nuclei production in heavy ion collisions

Dmytro (Dima) Oliinychenko Lawrence Berkeley National Laboratory

June 12, 2019

Strangeness in Quark Matter 2019

Outline

• Light (anti-)nuclei: challenges

Snowballs from hell Light nuclei and critical fluctuations Antihelium from space

Outline

• Light (anti-)nuclei: challenges

Snowballs from hell Light nuclei and critical fluctuations Antihelium from space

• Which models could address these challenges? How well do they work?

> Naive coalescence (no account of wavefunction) Advanced coalescence (account of wavefunction) Dynamical models $+$ coalescence Dynamical models (no coalescence)

Outline

• Light (anti-)nuclei: challenges

Snowballs from hell Light nuclei and critical fluctuations Antihelium from space

• Which models could address these challenges? How well do they work?

> Naive coalescence (no account of wavefunction) Advanced coalescence (account of wavefunction) Dynamical models $+$ coalescence Dynamical models (no coalescence)

• Possible solution of *Snowballs from hell* challenge

Challenge I: Snowballs from hell

• Nuclei yields in Pb $+$ Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV:

$$
N_A = \frac{g_A V}{2\pi^2} T m_A^2 K_2 (m_A/T), T = 155 \text{ MeV}
$$

- Nuclei spectra: $T_{kin} \simeq 110$ MeV
- How can they survive from chemical to kinetic freeze-out?
- Binding energies: $d, {}^{3}\text{He}, {}^{3}\text{H}, {}^{4}\text{He} 2.2, 7.7, 0.13, 8.5 \text{ MeV}$

Snowballs in hell.

Andronic, Braun-Munzinger, Redlich, Stachel, Nature 561 (2018) no.7723, 321-3305

Light nuclei: rapid chemical freeze-out at 155 MeV, like hadrons?

Challenge II: Light nuclei and critical fluctuations

Generic critical point feature: spatial fluctuations increase

Nucleon density fluctuations in coordinate space

Kaijia Sun et al., Phys. Lett. B 774, 103 (2017) Kaijia Sun et al., Phys. Lett. B 781 (2018) 499-504

Proton and neutron density:

Correlations and fluctuations:

$$
\rho_n(x) = \langle \rho_n \rangle + \delta \rho_n(x) \qquad \qquad C_{np} \equiv \langle \delta \rho_n(x) \delta \rho_p(x) \rangle / (\langle \rho_n \rangle \langle \rho_p \rangle)
$$

$$
\rho_p(x) = \langle \rho_p \rangle + \delta \rho_p(x) \qquad \qquad \Delta \rho_n \equiv \langle \delta \rho_n(x)^2 \rangle / \langle \rho_n^2 \rangle
$$

From a simple coalescence model

$$
N_d \approx \frac{3}{2^{1/2}} \left(\frac{2\pi}{mT}\right)^{3/2} \int d^3x \,\rho_p(x) \rho_n(x) \sim \langle \rho_n \rangle N_p(1 + C_{np})
$$

\n
$$
N_t \approx \frac{3^{1/2}}{4} \left(\frac{2\pi}{mT}\right)^3 \int d^3x \,\rho_p(x) \rho_n^2(x) \sim \langle \rho_n \rangle^2 N_p(1 + 2C_{np} + \Delta \rho_n)
$$

\n
$$
\frac{N_t N_p}{N_d^2} = \frac{1}{2\sqrt{3}} \frac{1 + 2C_{np} + \Delta \rho_n}{(1 + C_{np})^2}
$$

Thermal model expectation (with N_p – thermal protons) Light nuclei are sensitive to spatial density fluctuations

Extracting fluctuations from NA49 data

Kaijia Sun et al., Phys. Lett. B 781 (2018) 499-504 data: NA49, Phys. Rev. C94 (2016) no.4, 044906

Are the bumps related to fluctuations?

Can one reproduce them without assuming critical point?

Challenge III: Anti-helium by Alpha-Magnetic Spectrometer

- $\bullet\,$ Few events (compatible with) $^3\overline{\text{He}}$, $^4\overline{\text{He}}$ Caveats: hard measurement, 1 event/year, not published
- Where do they come from? Antimatter clouds? Dark matter annihilations? pp collisions? 6

Understanding anti-helium measurement by AMS

• K. Blum, K. C. Y. Ng, R. Sato and M. Takimoto, "Cosmic rays, antihelium, and an old navy spotlight,", PRD 96, no. 10, 103021 (2017)

Conclusion: \overline{He} production compatible with pp

Use coalescence model for $pp \rightarrow \overline{\text{He}} + X$

• V. Poulin, P. Salati, I. Cholis, M. Kamionkowski and J. Silk, "Where do the AMS-02 antihelium events come from?", PRD 99, no. 2, 023016 (2019)

Conclusion: pp cannot produce that much He advocate presence of anti-clouds in our Galaxy Use coalescence model for $pp \rightarrow \overline{\text{He}} + X$

- Both use pp collisions data from ALICE to calibrate models
- Extrapolation from $pp \rightarrow \bar{d}$ to $pp \rightarrow \bar{He} + X$, $pA \rightarrow \bar{He} + X$, $AA \rightarrow \overline{He} + X$, from high to low energies, from midrapidity to forward rapidity involved

Rapidity dependence from NA49

Uncertainty at high rapidity: AMS needs 4π yields of $\overline{\text{He}}$ 8

Theoretical approaches to light nuclei production

- Thermal model
- Analytical coalescence
	- Without nuclei wavefunction Gutbrod et al, Phys. Rev. Lett. 37 (1976) 667-670 Csernai, Kapusta, Phys. Rept. 131 (1986) 223-318
	- With nuclei wavefunction Sato, Yazaki, Phys. Lett. 98B (1981) 153-157 Scheibl, Heinz, Phys.Rev. C59 (1999) 1585-1602 Mrowczynski, Acta Phys. Polon. B48 (2017) 707 Sun, Chen, Phys.Rev. C95 (2017) no.4, 044905
- Dynamical model $+$ coalescence
	- Transport $+$ coalescence Zhu, Ko, Yin, Phys.Rev. C92 (2015) no.6, 064911 Dong et al., Eur.Phys.J. A54 (2018) no.9, 144
	- \bullet Hydro $+$ coalescence Ivanov, Soldatov, Eur.Phys.J. A53 (2017) no.11, 218
	- Hydro $+$ transport $+$ coalescence Sombun et al, Phys.Rev. C99 (2019) no.1, 014901
- Dynamical model, no coalescence
	- Light nuclei as a single degree of freedom Danielewicz, Bertsch, Nucl.Phys. A533 (1991) 712-748 Oh, Ko, Phys. Rev. C80 (2009) 064902 Oliinychenko, Pang, Elfner, Koch, Phys.Rev. C99 (2019) no.4, 044907
	- Light nuclei bound by potentials Kireyeu et al, KnE Energ.Phys. 3 (2018) 406-409

Disclaimer: References list is not comprehensive. Sorry.

Naive coalescence framework

- Nuclei are formed at late stages of collision
- Nucleons bind into nuclei if they are close in phase space

$$
E_A \frac{dN_A}{d^3 P_A} = B_A \left(E_{\rm p} \frac{dN_{\rm p}}{d^3 P_{\rm p}} \right)^Z \left(E_{\rm n} \frac{dN_{\rm n}}{d^3 P_{\rm n}} \right)^N \Big|_{P_{\rm p} = P_{\rm n} = P_A/A}
$$

• Expectations:

•
$$
B_A \sim \left(\frac{4}{3}\pi p_0^3\right)^{A-1}
$$
 or $B_A \sim V_{HBT}^{-(A-1)}$

- \bullet В $_2 \sim 1/V_{HBT}$, В $_3 \sim 1/V_{HBT}^2$
- $B_A(p_T) \approx const$ in pp
- larger charged multiplicity, smaller B_A
- $v_2^d(2p_T) = 2v_2^p(p_T)$

Are these naive expectations fulfilled?

Dependencies of B_2 : transverse momentum

compatible with coalescence expectation $V_{HBT}(m_T) \downarrow$, $B_2(m_T) \uparrow$

Dependencies of B_2 : transverse momentum

compatible with coalescence expectation $V_{HRT}(m_T) \downarrow B_2(m_T)$

Dependencies of B_2 : system size

 $V \uparrow$, $B_2 \downarrow$

Dependencies of B_2 : collision energy

STAR, Phys. Rev. C 92 (2015) no.1, 014904 STAR, arXiv:1903.11778

Not really compatible with $\mathit{B}_{\mathit{A}} \sim \mathit{V}_{HBT}^{-(A-1)}$ qualitatively! $V_{HBT} \searrow \nearrow \implies$ naive coalescence: $B_A \nearrow \searrow$

Dependencies of B_2 : collision energy

Braun-Munzinger, Dönigus Nucl. Phys. A 987 (2019) 144-201

But the order of magnitude is still right 13

Elliptic flow of light nuclei

Good agreement with $v_2^A(Ap_T) = Av_2^P(p_T)$

Elliptic flow of light nuclei

Good agreement with $v_2^A(Ap_T) = Av_2^P(p_T)$

Advanced coalescence

$[H$ ydro + $[t]$ transport + coalescence

Sombun et al, Phys.Rev. C99 (2019) no.1, 014901

- Take nucleon pair at $t = \text{max}$ of latest interaction times
- Boost to their rest frame
- Bind $|\Delta p|$ < 0.28 GeV and $|\Delta x|$ < 3.5 fm
- Take isospin factor into account

Good description from low to high energies with 2 parameters 16

$[H$ ydro + $[t]$ transport + coalescence

Sombun et al, Phys.Rev. C99 (2019) no.1, 014901

- Take nucleon pair at $t = \text{max}$ of latest interaction times
- Boost to their rest frame
- Bind $|\Delta p|$ < 0.28 GeV and $|\Delta x|$ < 3.5 fm
- Take isospin factor into account

Good description from low to high energies with 2 parameters 16

$[H$ ydro $+$ transport $+$ coalescence

Sombun et al, Phys.Rev. C99 (2019) no.1, 014901

- Take nucleon pair at $t = \text{max}$ of latest interaction times
- Boost to their rest frame
- Bind $|\Delta p|$ < 0.28 GeV and $|\Delta x|$ < 3.5 fm
- Take isospin factor into account

Good description from low to high energies with 2 parameters 16

Challenge I: Snowballs from hell

- Assuming rapid freeze-out of nuclei together with hadrons
- Nuclei yields in Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV:

$$
N_A = \frac{g_A V}{2\pi^2} T m_A^2 K_2 (m_A/T), T = 155 \text{ MeV}
$$

• Binding energies: $d, {}^{3}\text{He}, {}^{3}\text{H}, {}^{4}\text{He} - 2.2, 7.7, 0.13, 8.5 \text{ MeV}$

Snowballs in hell.

Andronic, Braun-Munzinger, Redlich, Stachel, Nature 561 (2018) no.7723, 321-3305

Light nuclei: rapid chemical freeze-out at 155 MeV, like hadrons?

Purely dynamical model

Oliinychenko, Pang, Elfner, Koch, Phys.Rev. C99 (2019) no.4, 044907 Oliinychenko, Pang, Elfner, Koch, MDPI

Particlization T = 155 MeV

- CLVisc hydro L. G. Pang, H. Petersen and X. N. Wang, arXiv:1802.04449 [nucl-th]
- SMASH hadronic afterburner J. Weil et al., PRC 94, no. 5, 054905 (2016)
- Treat deuteron as a single particle
	- implement deuteron $+ X$ cross-sections explicitly 18

Reactions with deuteron implemented in SMASH

- $\pi d \leftrightarrow \pi np$, $\pi d \leftrightarrow np$, elastic $\pi d \leftrightarrow \pi d$
- $Nd \leftrightarrow Nnp$, elastic $Nd \leftrightarrow Nd$
- $\bar{N}d \leftrightarrow \bar{N}np$, elastic $\bar{N}d \leftrightarrow \bar{N}d$
- CPT conjugates of all above reactions for anti-deuteron
- all are tested to obey detailed balance within 1% precision

 $\pi d \leftrightarrow \pi np$ is the most important at high (LHC) energies $Nd \leftrightarrow Nnp$ is the most important at low (AGS) energies

$B_2(p_T)$ and v_2 for different centralities

No free parameters. Works well for all centralities.

$B_2(p_T)$ and v_2 for different centralities

No free parameters. Works well for all centralities.

Does deuteron freeze out at 155 MeV?

Only less than 1% of final deuterons original from hydrodynamics

Is $\pi d \leftrightarrow \pi np$ reaction equilibrated

After about 12-15 fm/c within 5% $\pi d \leftrightarrow \pi np$ is equilibrated

The yield is almost constant. Why? Does afterburner really play any role? 23

No deuterons at particlization: also possible. Here all deuterons are from afterburner. 23

No deuterons at particlization: also possible. Here all deuterons are from afterburner. 23

Without $B\bar{B}$ annihilations yield coincidence is less impressive

But it persists if T of particlization is changed to 165 MeV

Why thermal model works for light nuclei

- Stable hadron yields $(\pi, K, N, \Lambda, \text{dots})$ including resonances are fixed at chemical freeze-out
- Each conserved hadron gets chemical potential
- Nuclei are kept in partial (relative) equilibrium by huge cross-sections of $A + h \leftrightarrow A \times N + h$ until kinetic freeze-out
- Therefore nuclei yields stay constant from hadron chemical freeze-out to kinetic
- This picture works for all measured nuclei Xu, Rapp, Eur. Phys. J. A55 (2019) no.5, 68 Vovchenko et al, arXiv:1903.10024
- It works even if no nuclei are produced at chemical freeze-out Oliinychenko, Pang, Elfner, Koch, Phys.Rev. C99 (2019) no.4, 044907 Oliinychenko, Pang, Elfner, Koch, MDPI
- If wavefunction is large or or very large does not matter as long as the cross-sections are large enough to keep relative equilibrium

• Nuclei do not freeze out chemically with hadrons. But their yields are determined at chemical freeze-out. Because nuclei are bound to nucleons by partial equilibrium.

- Nuclei do not freeze out chemically with hadrons. But their yields are determined at chemical freeze-out. Because nuclei are bound to nucleons by partial equilibrium.
- Advanced coalescence:

does wavefunction size matter? To be tested.

- Nuclei do not freeze out chemically with hadrons. But their yields are determined at chemical freeze-out. Because nuclei are bound to nucleons by partial equilibrium.
- Advanced coalescence: does wavefunction size matter? To be tested.
- Dynamical models $+$ coalescence: need them to understand the role of fluctuations on light nuclei. Thermal / blast wave does not help here. Correct underlying phase-space distribution of nucleons is important.

- Nuclei do not freeze out chemically with hadrons. But their yields are determined at chemical freeze-out. Because nuclei are bound to nucleons by partial equilibrium.
- Advanced coalescence: does wavefunction size matter? To be tested.
- Dynamical models $+$ coalescence: need them to understand the role of fluctuations on light nuclei. Thermal / blast wave does not help here. Correct underlying phase-space distribution of nucleons is important.
- Need more purely dynamical models studies. Need hadronic exclusive cross-sections: $d + \pi$, $d + p$, $t + \pi$, $t + p$, ... to be measured or analytically computed.

Thank you!

Selected experimental results: spectra

- \bullet NA49 Phys. Rev. C94 (2016) no. 4, 044906
	- $\sqrt{s_{NN}} = 6.3 17.3 \text{ GeV}$
	- central Pb+Pb collisions
	- \bullet d, t, 3 He
	- p_T and y differential
- \bullet STAR $arXiv:1903$ 11778
	- $\sqrt{s_{NN}} = 7.7 200 \text{ GeV}$
	- \bullet 5 centrality classes Au+Au
	- \bullet d, \overline{d}
	- midrapidity, p_T differential
- ALICE Phys. Rev. C93 (2016) no. 2, 024917
	- $\sqrt{s_{NN}} = 2.76$ TeV
	- \bullet 5 centrality classes $Pb+Pb$, pp
	- \bullet d, $^3\mathrm{He}$, $^3_\mathrm{A}\mathrm{H}$, $^4\mathrm{He}$ and anti-particles
	- midrapidity, p_T differential

Flashing deuteron spectra

Flashing deuteron spectra

Flashing deuteron spectra

Can one obtain a physical picture out of these spectra? Yes!

Integrated spectra: midrapidity d/p ratio

Light nuclei are rare in relativistic HIC "Penalty factor" at $\sqrt{s_{NN}} > 5$ GeV: $10^{-1} \rightarrow 3 \cdot 10^{-3}$

$Transport + coalescence$

- $\bullet\,$ Form cluster if $m\leq |m_{inv}|\leq m+\Delta m$ and $|x_i-x_j|< D$
- Δm and D depend on nucleus the values are not specified in the publication

Hydro+coalescence

Ivanov, Soldatov, Eur.Phys.J. A53 (2017) no.11, 218

- 3-fluid hydrodynamics
- Computing coalescence spectra in every hydro cell
- Parameter P_{NZ} fit to match yield

Hydro+coalescence

- 3-fluid hydrodynamics
- Computing coalescence spectra in every hydro cell
- Parameter P_{NZ} fit to match yield

Most important deuteron production/disintegration reactions

Largest $d + X$ disintegration rate \rightarrow largest reverse production rate Most important $=$ largest $\sigma^\text{inel}_{d+X} n_X$

X	σ _{dr+X} [mb] (√s - √s _{thr} = [0.05, 0.25] GeV)	$\frac{dN^x}{dy} _{y=0}$
π^{\pm}	80 - 160	732
K^+	< 40	109
K^-	< 80	109
p	50 - 100	33
\bar{p}	80 - 200	33
γ	< 0.1	complex to π?

 $\pi + d$ are the most important because of pion abundance

Reactions of deuteron with pions

 $\pi d \leftrightarrow \pi np$ is the most important at LHC energies $\sigma_{\pi d}^{\text{inel}} > \sigma_{\pi d}^{\text{el}}$, not like for hadrons 33

Reactions of deuteron with (anti-)nucleons

 $Nd \leftrightarrow Nnp$, $\bar{N}d \leftrightarrow \bar{N}np$: large cross-sections but not important at LHC energies, because N and \bar{N} are sparse 34

Reactions of deuteron with (anti-)nucleons

 $Nd \leftrightarrow Nnp$, $\bar{N}d \leftrightarrow \bar{N}np$: large cross-sections but not important at LHC energies, because N and \bar{N} are sparse 34

Transverse momentum spectra

Pion and kaon spectra not affected by afterburner Proton spectra: pion wind effect and BB annihilations ($\sim 10\%$) 35

Obtaining $B_2(p_T)$ coalescence parameter

Reproducing B_2 without any free parameters 36

p_T -spectra for different centralities

p_T -spectra for different centralities

Toy model of deuteron production: no annihilations

- only π , N, Δ , and d
- isoentropic expansion
- pion number conservation
- baryon (not net!) number conservation

$$
(s_{\pi}(T,\mu_{\pi})+s_{N}(T,\mu_{B})+s_{\Delta}(T,\mu_{B}+\mu_{\pi})+s_{d}(T,2\mu_{B}))V = const
$$

$$
(\rho_{\Delta}(T,\mu_{B}+\mu_{\pi})+\rho_{\pi}(T,\mu_{\pi}))V = const
$$

$$
(\rho_{N}(T,\mu_{B})+\rho_{\Delta}(T,\mu_{B}+\mu_{\pi})+2\rho_{d}(T,2\mu_{B}))V = const
$$

No annihilation: deuteron yield grows, like in simulation.

 $T_{\text{particization}} = 165$ MeV. Relative yields are similar, like in simulation. 39

Annihilation out of equilibrium: $\mu_B = \mu_B \frac{V/V_0}{A + V/V_0}$ $\frac{V/V_0}{a+V/V_0}$, $a=0.1$ $T_{\text{particlication}} = 155 \text{ MeV}.$ 39

Annihilation out of equilibrium: $\mu_B = \mu_B \frac{V/V_0}{A + V/V_0}$ $\frac{V/V_0}{a+V/V_0}$, $a=0.1$ $T_{\text{particization}} = 165 \text{ MeV}$. Qualitatively similar to our simulation. 39