
Quark matter in neutron stars:
where do we stand?

Mark Alford
Washington University in St. Louis

Alford, Han, Schwenzer, arXiv:1904.05471



Outline

I What is quark matter?
Phase diagram of dense matter
Does quark matter have distinguishing characteristics ?

II Quark matter in neutron stars
Astrophysics and microphysics:
I Equation of state
I Spindown
I Cooling
I Merger dynamics

III Summary
Manifestations of quark matter in neutron stars
Looking to the future



I. What is quark matter?
Conjectured QCD phase diagram
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heavy ion collisions: deconfinement crossover and chiral critical point
neutron stars: color superconducting quark matter core?
neutron star mergers: dynamics of warm matter, heavy remnant



Phases of (cool) quark matter

I Quark matter is “Unconfined”
Spatially localized baryonic “bags”
are not the relevant degrees of freedom,
But confinement is not an observable.
E.g., excited states are still created by
gauge-invariant baryonic operators

I Color superconductivity
In the ultra-high density limit, we expect the ground state to be a
condensate of Cooper pairs of quarks. Many pairing patterns
I Color-Flavor-Locked (CFL): all 3 colors and flavors pair
I 2SC: only u,d ,u,d undergo pairing
I LOFF: spatially modulated condensate, forming a “crystal”
I Color-Spin-Locked (CSL): pairing of all 3 colors of a single flavor
I . . .



Phases of quark matter

Prediction of an NJL model, uniform phases only
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Summary

I There are observables that would point to quark matter in neutron
stars

I There is no hard evidence for quark matter in neutron stars

I There is no hard evidence ruling out quark matter in neutron stars

I There is evidence against matter made of quasi-free quarks

I There is one mystery that quark matter could solve.



How do we distinguish forms of matter?

I Landau classification : qualitative observables (order parameters)
signalling spontaneous breaking of exact symmetries.
I Baryon number → superfluidity
I Electromagnetic gauge sym → superconductivity
I Spacetime translation and rotation → crystallization

I Large quantitative differences
I spontaneous breaking of approximate symmetries

e.g. chiral symmetry breaking → light pions
I Quantitative transitions (gas/plasma, metal/insulator);

properties of Fermi surface



Is quark matter distinguishable?

Landau classification:

Matter type superfluid supercond crystalline

nucleons (unpaired)

nucleons (paired)

hyperon-nucleon

neutrons (inner crust)

unpaired quarks

2SC

CFL

LOFF

No exact symmetry breaking pattern distinguishes quark matter



Beyond the Landau classification
Quantitative transitions

hadronic matter: low energy fermionic degrees of
freedom are non-relativistic (low Fermi velocity)

quark matter: low energy fermionic degrees of
freedom are relativistic (high Fermi velocity)

Manifestation: affects transport properties, e.g.
beta equilibration → bulk viscosity
ν emission → cooling

E

p

Approximate symmetry breaking
e.g., hadronic matter: chiral sym breaking, light pions.

quark matter (unpaired or 2SC): chiral sym restored

Manifestation: not clear. Bosons play subleading role.



II. Quark matter in neutron stars

Conventional scenario
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Signatures of quark matter in compact stars

Observable ← Microphysical properties
(and neutron star structure)

← Phases of dense matter

Property Nuclear phase Quark phase
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Quark Matter and the Equation of State
“Masquerade effect”

EoS may be very similar in different phases
(e.g. in metals: superconducting vs. “normal”).

Uncertainty about quark matter EoS allows
tuning its parameters to match hadronic EoS.

Sharp 1st-order phase transition

This could indicate nuclear to quark matter transition

How would a strong first-order transition in
the EoS be manifest in observations?

Conformal speed of sound

Quark matter: massless weakly-interacting fermions have c2s ≈ 1/3
Hadronic matter: relativistic mean field models can give c2s ≈ 1



Manifestation of 1stOPT: twin stars
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Constraints on 1stOPT from Mmax

2M� observation allows
two scenarios:

• high ptrans: very small
connected branch

• low ptrans:
no twin stars!

Alford, Han, arXiv:1508.01261; see also Tews et al, arXiv:1801.01923, etc.

With c2QM .
1
3

you can just barely get a 2M� star.



1stOPT: grav waves from mergers
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solid lines: gravitational wave strain
translucent lines: instantaneous frequency

For EoS with a 1st-order transition to quark matter,
the GW signal develops a phase difference of order π.



1stOPT: grav waves from mergers
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For EoS with a sharp 1st-order phase transition,
GW spectrum shows a shifted f2 peak.



Quark matter and spin-down
Spindown via grav. waves depends on properties of the star’s interior.

An r-mode is a quadrupole flow
that emits gravitational radiation.
It becomes unstable (i.e. arises
spontaneously) when a star spins
fast enough, and if the shear and
bulk viscosity are low enough.

Side viewPolar view

mode pattern

star

The unstable r -mode can spin the star down very quickly, in a few days
if the amplitude is large enough

(Andersson gr-qc/9706075; Friedman and Morsink gr-qc/9706073; Lindblom
astro-ph/0101136)

if neutron star
spins quickly

⇒ some interior physics
damps the r -modes



Typical r-mode instability region
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• Instability region depends on viscosity of star’s interior.
• Behavior of stars inside instability region depends on

saturation amplitude of r-mode.



r-modes and pulsars

There are stars in the “forbidden zone” for nuclear matter
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Data for accreting pulsars in
binary systems (LMXBs) vs
instability curves for:
• nuclear stars
• hybrid stars with unpaired
quark matter (possible

tension with cooling data)

Another Possibility:
• “tiny r-mode” (small αsat)
r-mode spindown very slow

(Alford, Schwenzer, arXiv:1310.3524; Haskell, Degenaar, Ho, arXiv:1201.2101)



R-modes Summary

I r-modes are sensitive to viscosity and other damping characteristics
of interior of star

I Mystery: There are stars inside the instability region for standard
“nuclear matter with viscous damping” model.

I Possible explanations:
I Microphysical extra damping (e.g. unpaired quark matter )

I Astrophysical extra damping (some currently unknown
mechanism in a nuclear matter star)

I “tiny r-mode” : very low saturation amplitude

Need αsat . 10−8: what mechanism can do this?
Hybrid star: nuclear 
 quark phase conversion dissipation

Alford, Han, Schwenzer, arXiv:1404.5279



Quark Matter and Cooling
We can understand cooling in terms of hadronic models with slow
(modified Urca) or intermediate (pair breaking) cooling.
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(Negreiros, Tolos, et al, arXiv:1804.00334)
See also, e.g., Wei, Burgio, Schulze, arXiv:1812.07306,
Beloin et al, arXiv:1812.00494, etc

For isolated neutron
stars, we do not
know their mass.

If we knew the
masses, the cooling
data would provide a
more demanding
constraint.



Cooling of a star with quark matter core
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Unpaired quark matter
would cool very fast: is
it ruled out?

CFL quark matter: little
impact on cooling.

(Grigorian, Blaschke, Voskresensky, astro-ph/0411619)

This model has quark matter with 2-flavor “2SC” quark pairing and
weak pairing of the blue quarks.
It can accomodate data with masses ranging from 1.1 M� to 1.7 M�.



III. Manifestations of quark matter in neutron stars

• Fast pulsar mystery : suppression of r-modes
r-modes stabilized by bulk viscosity in quark matter
r-mode amplitude kept low by quark-hadron conversion

• Sharp first-order transition to denser phase
separate branch of twin stars (different radii)
effect on grav waves from mergers
effect on tidal deformability

• Phase with c2s ≈ 1/3 (weakly-interacting light quarks)
close to being ruled out by max mass measurement

• Phase with more/lighter fermions
fast cooling of unpaired quark matter
shifted bulk viscosity peak in unpaired quark matter

• Superfluid insulating phase (probably CFL quark matter)
very low specific heat affects cooling after bursts

• Very rigid crystalline phase at high density (LOFF phase)
high ellipticity ⇒ grav waves from pulsar



Looking to the Future
What do we need to detect quark matter in neutron star cores??

I More data on observable properties of neutron stars
I mass and radius
I spindown (spin and age)
I cooling (temperature, age, mass)
I grav waves from “mountains” and mergers

I Better modelling of neutron stars and mergers:
I astrophysical damping and saturation mechanisms for r-modes
I mechanism of glitches
I effects of magnetic fields
I mergers: finer resolution; turbulence? magnetic fields; dissipation;

I Understand high-density matter
I understand nuclear matter better: EoS, paired phases
I better models of quark matter: Functional RG, Schwinger-Dyson

quark matter EoS and phases (crystalline (LOFF) or. . .?)
I solve the sign problem and do lattice QCD at high density.


