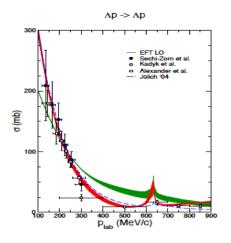


Hyperon interaction with dense nuclear matter and link to neutron stars

Laura Tolós


Institute of Space Sciences CSIC IEEE

The 18th International Conference on **Strangeness in Quark Matter (SQM 2019)** 10-15 June 2019, Bari (Italy)

Outline

- YN and YY interactions
- Theoretical approaches to YN and YY
- YN and YY interactions in χEFT
- Hyperons and Neutron Stars
- Summary

YN and YY interactions

Study strangeness in nuclear physics

• Provide input for hypernuclear physics and astrophysics

hiperon (Λ , Σ , Ξ ...)

hypernucleus

Scarce YN scattering data due to the short life of hyperons and the low-density beam fluxes

 ΛN and ΣN : < 50 data points ΞN very few events

NN: > 5000 data for E_{lab}<350 MeV

Data from hypernuclei:

- more than 40 <u>A-hypernuclei</u>
 (AN attractive)
- few $\Lambda \Lambda$ hypernuclei
- $(\Lambda\Lambda$ weak attraction)
- single Ξ-hypernuclei
 (ΞN attractive)
- no evidence of Σ-hypernuclei
 (ΣN repulsive)

Theoretical approaches to YN and YY

Meson meson-exchange models (Juelich/Nijmegen models)
 To build YN and YY from a NN meson-exchange model imposing
 SU(3)_{flavor} symmetry
 Juelich: Holzenkamp, Holinde, Speth '89; Haidenbauer and Meißner '05
 Nijmegen: Maesen, Rijken, de Swart '89; Rijken, Nagels and Yamamoto '10

Chiral effective field theory approach (Juelich-Bonn-Munich group)
 To build YN and YY from a chiral effective Lagrangian similarly to NN
 interaction
 Juelich-Bonn-Munich: Polinder, Haidenbauer and Meißner '06; Haidenbauer, Petschauer, Kaiser, Meißner, Nogga and Weise '13

Kohno '10; Kohno '18

This talk!

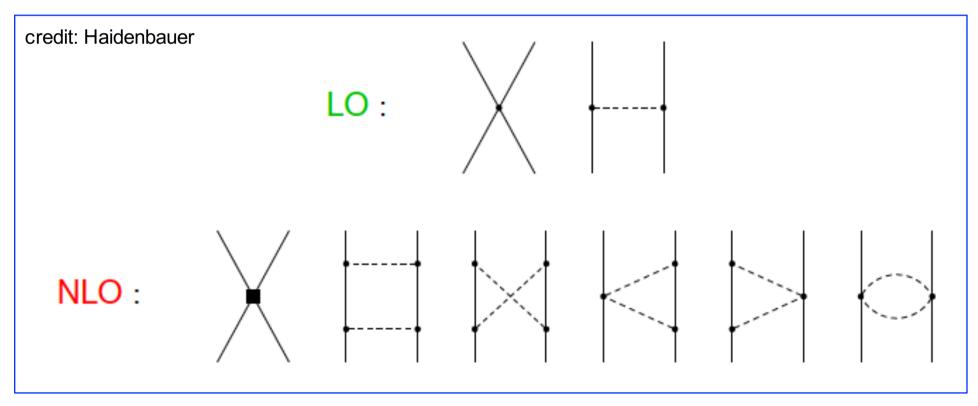
Quark model potentials

To build YN and YY within constituent quark models

Fujiwara, Suzuki, Nakamoto '07 Garcilazo, Fernandez-Carames and Valcarce '07 '10

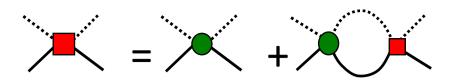
 V_{low k} approach
 Garcilazo, Fernandez-Carames and Valcarce '07 '1 To calculate a "universal" effective low-momentum potential for YN and YY using RG techniques
 Garcilazo, Fernandez-Carames and Valcarce '07 '1 Schaefer, Wagner, Wambach, Kuo and Brown '06

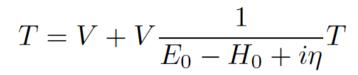
Lattice calculations (HALQCD/NPLQCD) T. Hatsuda (HALQCD) talk
 To solve YN and YY interactions on the lattice

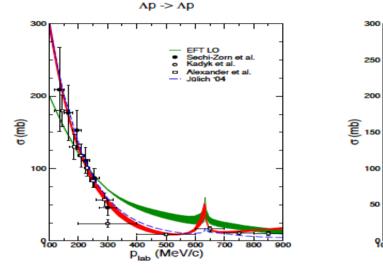

HALQCD: Ishii, Aoki, Hatsuda '07; Aoki, Hatsuda and Ishii '10; Aoki et al '12 **NPLQCD:** Beane, Orginos and Savage '11; Beane et al '12

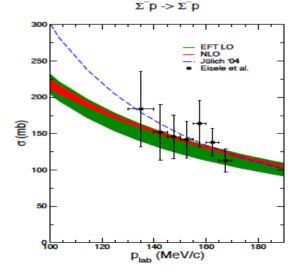
YN and YY interactions in χ EFT

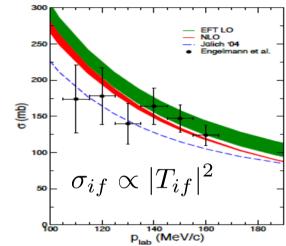
Baryon-Baryon interaction in SU(3) χ EFT a la Weinberg (1990);


- **Power counting** allowing for a systematic improvement by going to higher order
- Derivation of two- and three-baryon forces in a consistent way

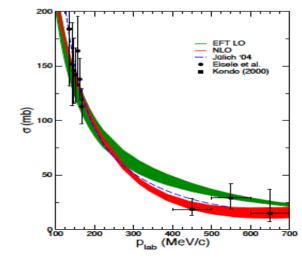

Degrees of freedom: octet of baryons (N, Λ , Σ , Ξ) & pseudoscalar mesons (π , K, η) Diagrams: pseudoscalar-meson exchanges and contact terms

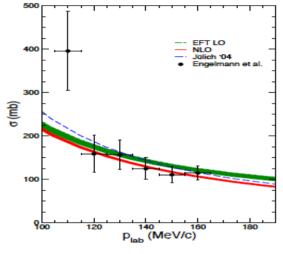

LO: H. Polinder, J.H., U. Meißner, NPA 779 (2006) 244 NLO: J.H., N. Kaiser, U.-G. Meißner, A. Nogga, S. Petschauer, W. Weise, NPA 915 (2013)_24


ΛN and ΣN scattering data: the coupled-channel Lippman-Schwinger Equation

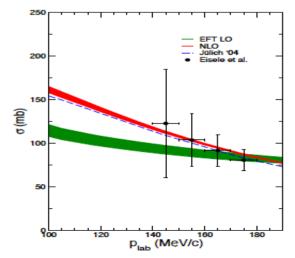


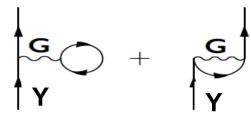
LO: H. Polinder, J.H., U. Meißner, NPA 779 (2006) 244 NLO: J.H., N. Kaiser, et al., NPA 915 (2013) 24 Jülich '04: J.H., U.-G. Meißner, PRC 72 (2005) 044005



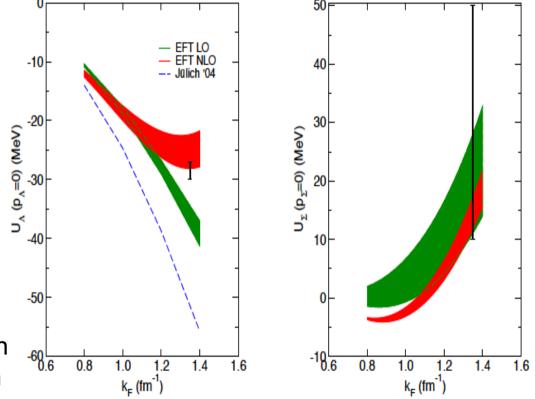


 $\Sigma^{-}p \rightarrow \Lambda n$




 $\Sigma^{-}p \rightarrow \Sigma^{0}n$

Λ and **Σ** in dense matter: Brueckner-Hartree-Fock

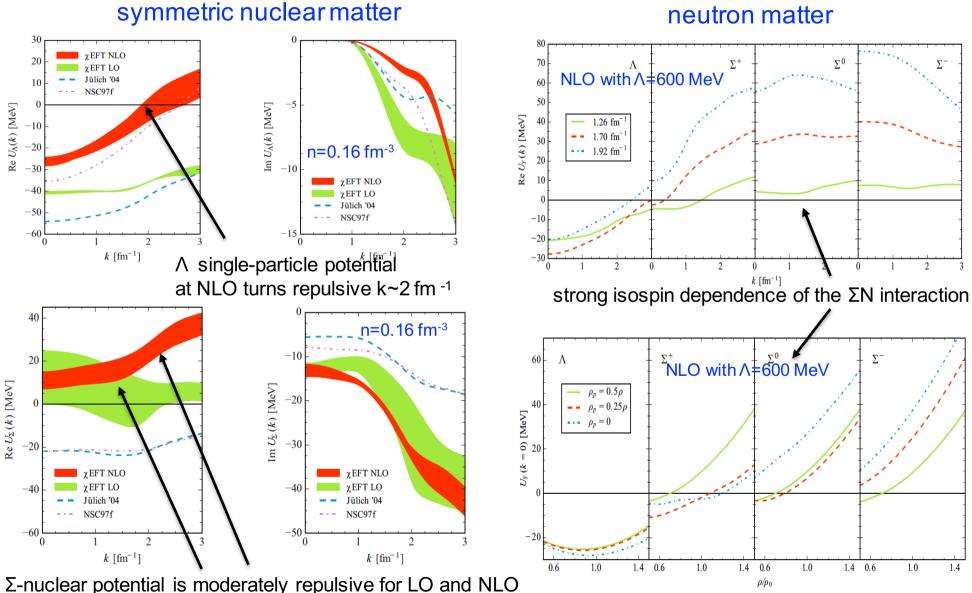

$$G = V + V \frac{Q_{\text{pauli}}}{E_0 - H_0} G$$

 $k_F = 1.35 \text{ fm}^{-1} \ (\rho_0 = 0.166 \text{ fm}^{-3})$

	EFT LO	EFT NLO
۸ [MeV]	550 • • • 700	500 • • • 650
<i>U</i> ∧(0)	-38.0 • • • -34.4	-28.222.4
<i>U</i> _Σ (0)	28.0 • • • 11.1	17.3 • • • 11.9

- Empirical value of Λ binding in nuclear matter ~27-30 MeV

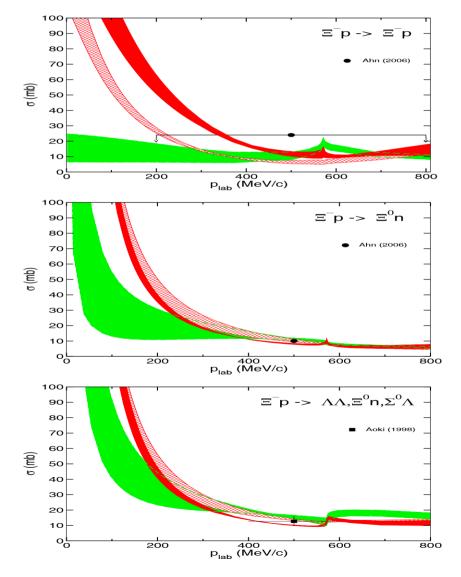
- ΣN (I=3/2): ${}^{3}S_{1}$ - ${}^{3}D_{1}$ decisive for Σ properties in nuclear matter. YN data can be reproduced with attractive and repulsive ${}^{3}S_{1}$ - ${}^{3}D_{1}$ interaction. It is chosen to be repulsive in accordance to data on Σ^{-} atoms and (π^{-}, K^{+}) inclusive spectra for Σ^{-} formation in heavy nuclei. Lattice* supports repulsion!

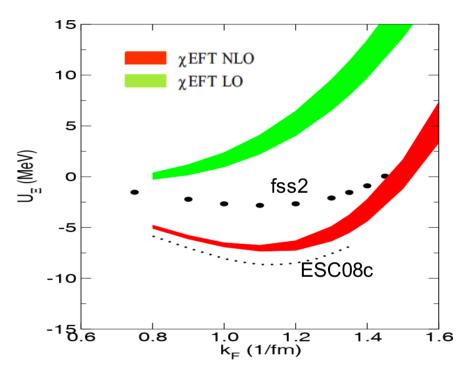


Haidenbauer and Meißner , NPA 936 (2015) 29

* Nemura et al EPJ Web of Conferences 175 (2018) 05030; Hatsuda (HALQCD) SQM2019

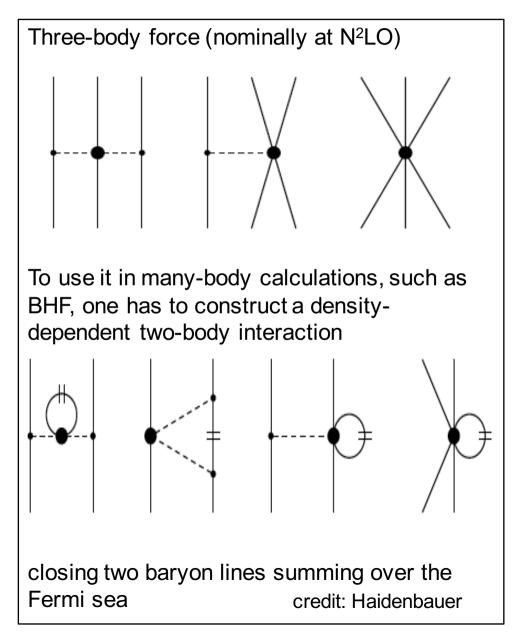
Improving on the calculation by using $\chi EFT NN$ interaction and continuous choice in Brueckner-Hartree-Fock approach while investigating isospin-asymmetric matter

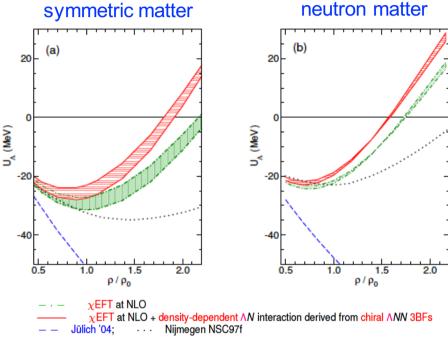

S. Petschauer, J. Haidenbauer, N. Kaiser, U.G. Meißner and W. Weise EPJA 52 (2016) 15


EN scattering and E in dense matter J. Haidenbauer and

U.G. Meißner EPJA 55 (2019) 23

Using experimental constraints on $\Lambda \Lambda$ scattering length to be mildly attractive, whereas ΞN cross sections are small


E in dense matter

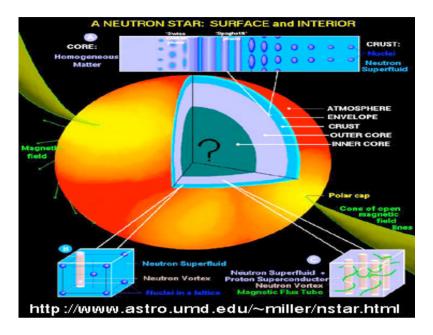


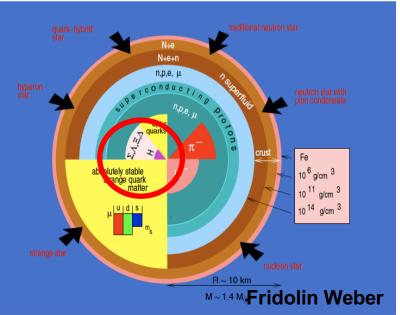
Moderately attractive Ξ -nuclear interaction, with $U_{\Xi}(0) \sim -3$ to -5 MeV. Smaller than $U_{\Xi}(n_0) \sim -14$ MeV Khaustov et al'00 and in line with other BHF studies with phenomenological Ξ N potentials

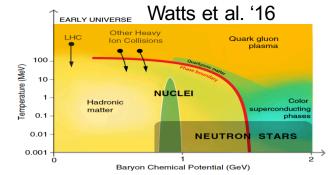
Λ in dense matter: including three-body forces

Three-body forces are required to reproduce few-nucleon binding energies, scattering observables and nuclear saturation in non-relativistic many-body approaches

Λ in dense matter

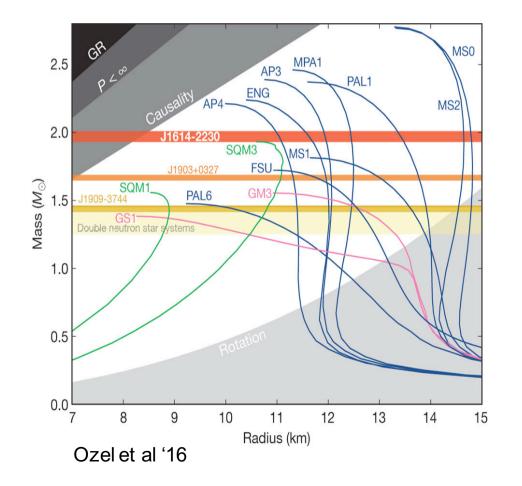

χEFT gives little attraction or even repulsion for n>n_0


In neutron stars, hyperons will appear at high density!!


Solution of the Hyperon Puzzle?

J. Haidenbauer, U.G. Meißner, N. Kaiser and W. Weise EPJA 53 (2017) 121

Hyperons and Neutron Stars

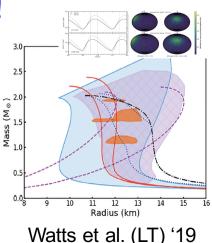


- produced in core collapse supernova explosions, usually observed as pulsars
- usually refer to compact objects with M~1-2 M_{\odot} and R~10-12 Km
- extreme densities up to 5-10 ρ_0 (n₀=0.16 fm⁻³ => ρ_0 =3•10¹⁴ g/cm³)
- magnetic field : $B \sim 10^{8..16} G$
- temperature: T ~ 10 6...11 K
- observations: masses, radius (?), gravitational waves, cooling...

Mass-Radius Relation

$$\frac{dP}{dr} = -\frac{Gm\epsilon}{c^2r^2}\left(1+\frac{P}{\epsilon}\right)\left(1+\frac{4\pi r^3P}{c^2m}\right)\left(1-\frac{2Gm}{c^2r}\right)^{-1}$$

$$\frac{dm}{dr} = \frac{4\pi r^2\epsilon}{c^2}$$



- primary ingredient:
 EoS: ε(n), P(n), P(ε)
 in charge neutral β-stable matter
- some constraints:
- Schwarzschild limit (GR)
 R ≥ 2 GM/c²
- causality limit for EoS $R \ge 2.9 \text{ GM/c}^2$
- mass-shedding limit R < $(GM/2\pi)^{1/3}/v^{2/3}$

Need of simultaneous mass-radius measurements to constrain EoS !!!

The Nucleonic Equation of State

The Equation of State (EoS) is a relation between thermodynamic variables describing the state of matter

Microscopic Ab-initio Approaches:

based on solving the many-body problem starting from two- and threebody interactions

- Variational method: APR, CBF,..
- Quantum Montecarlo : AFDMC..
- Coupled cluster expansion
- Diagrammatic: BBG (BHF), SCGF..
- Relativistic DBHF
- RG methods: SRG from χ EFT..
- Lattice methods

Advantage: systematic addition of higher-order contributions Disadvantage: applicable up to? (SRG from χ EFT ~ 1-2 n₀) Phenomenological Approaches: based on density-dependent interactions adjusted to nuclear observables and neutron star observations

- Non-relativistic EDF: Skyrme..
- Relativistic Mean-Field (RMF) and Relativistic Hartree-Fock (RHF)
- Liquid Drop Model: BPS, BBP,..
- Thomas-Fermi model: Shen
- Statistical Model: HWN, RG, HS..

Advantage: applicable to high densities beyond n₀ Disadvantage: not systematic

What about Hyperons?

credit: Vidana

Hyperon	Quarks	(J⊳)	Mass (MeV)
Λ	uds	O(1/2+)	1115
Σ^+	uus	1(1/2+)	1189
Σο	uds	1(1/2+)	1193
Σ-	dds	1(1/2+)	1197
Ξο	uss	1/2(1/2+)	1315
Ξ-	dss	1/2(1/2+)	1321
Ω-	<mark>5</mark> 55	0(3/2+)	1672

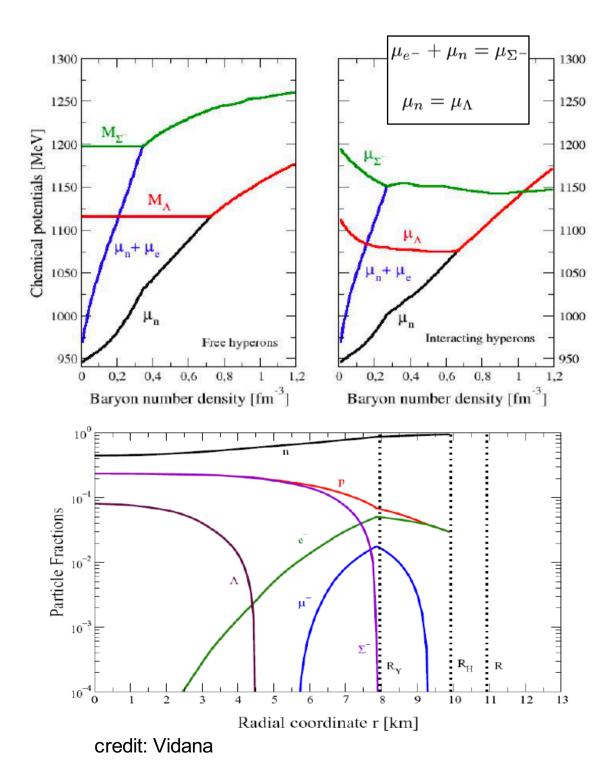
First proposed in 1960 by Ambartsumyan & Saakyan

Traditionally neutron stars were modeled by a uniform fluid of neutron rich matter in β -equilibrium $n \rightarrow p \ e^- \ \nu_e$

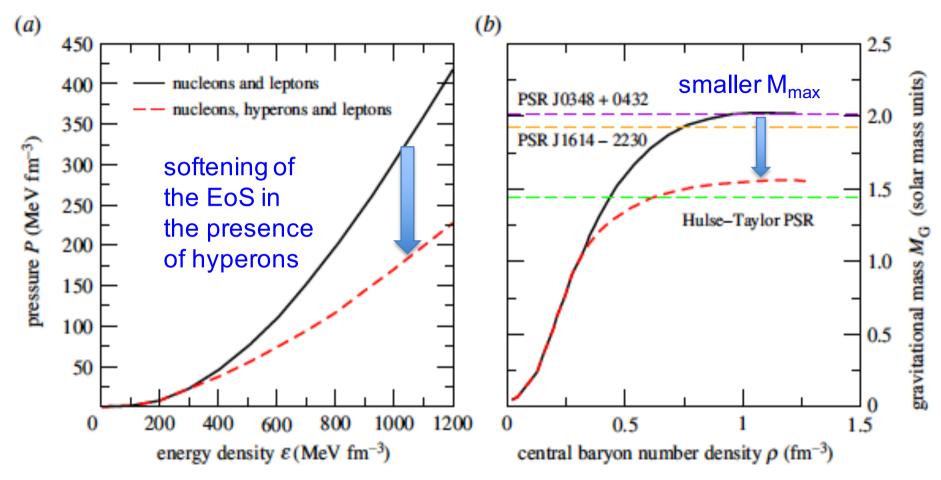
 $p \ e^- \rightarrow n \ \nu_e$

but more exotic degrees of freedom are expected, such as **hyperons**, due to:

- high value of density at the center and
- the rapid increase of the nucleon chemical potential with density


Hyperons might be present at $n \sim (2-3)n_0$!!!

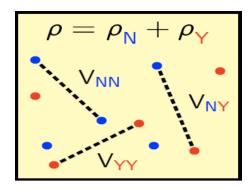
β-stable hyperonic matter


 μ_N is large enough to make N->Y favorable

$$\begin{array}{l} n+n \rightarrow n+\Lambda \\ p+e^{-} \rightarrow \Lambda + v_{e^{-}} \\ n+n \rightarrow p+\Sigma^{-} \\ n+e^{-} \rightarrow \Sigma^{-} + v_{e^{-}} \end{array}$$

$$\mu_i = b_i \mu_n - q_i \mu_e$$
$$\sum_i x_i q_i = 0$$

Inclusion of hyperons....



..... induces a strong softening of the EoS that leads to $M_{max} < 2M_{sun}$

Chatterjee and Vidana, Eur.Phys.J.A52 (2016) 29 Vidana, Proc. Roy. Soc. Lond. A474 (2018) 0145

The Hyperon Puzzle

Experimental Data from YN scattering and hypernuclei

Theoretical models for hyperons in neutron stars

- YN: < 50 scattering data points
- NA: Λ -hypernuclei for A=3-209, $U_{\Lambda}(n_0)$ = -30 MeV
- NΣ: Σ⁻ atoms but
- no Σ -hypernuclei, $U_{\Sigma}(n_0)$ = 30 MeV ?
- NE: one E hypernuclei
- $U_{\Xi}(n_0)$ = -14/-18/-28 MeV ?
- $\Lambda\Lambda$: few $\Lambda\Lambda$ hypernuclear events, slightly attractive ?
- **YY** with Λ , Σ , Ξ unknown!

- Relativistic mean field models Glendenning '85; Knorren, Prakash & Ellis '95; Schaffner & Mishustin '96..
- Non-relativistic potential model Balberg & Gal '97...
- Quark-meson coupling model Pal et al '99..
- Chiral effective lagrangians Hanauske et al. '00...
- Density dependent hadron field model Hofmann, Keil & Lenske '01..
- DBHF/BHF approaches

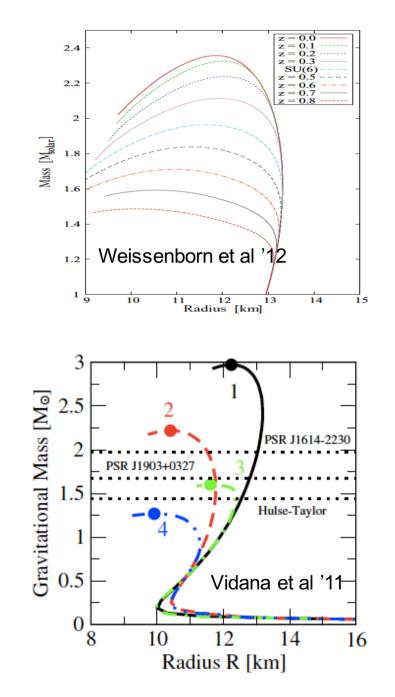
Brockmann & Machleidt '90; Baldo, Burgio,Schulze '00; Vidana et al. '00; Jong and Lenske '98..

- Low-momentum interactions Schwenk, Pethick, Hebeler, Friman, LT, Djapo..
- Quantum Montecarlo Leonardi et al '14..

Solutions to the Hyperon Puzzle?

I. Stiffer YN and YY interactions

mainly explored in RMF models: coupling of ϕ to hyperons to shift the onset of hyperons to higher densities Bednarek et al '12; Weissenborn et al '12; Oerte et al '15; Maslov et al '15..


results still compatible with $\Delta B_{\Lambda\Lambda}$ (⁶He_{$\Lambda\Lambda$}) Fortin et al '17

II. Hyperonic 3-body forces

not yet a general consensus:

while for some models 2Msun are reached, Taktasuka et al '02 '08; Yamamoto et al '13 '14.. for others M_{max} is $1.6M_{sun}$ Vidana et al '11 while Lonardoni et al '15 shows no a conclusive outcome due to the strong dependence on Λ NN force

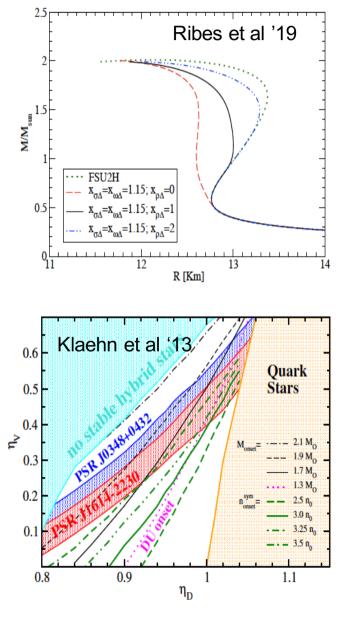
Solution from point of view of $\chi EFT!!$

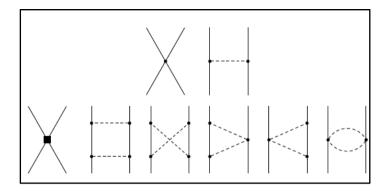
Solutions to the Hyperon Puzzle?

III. Push of Y onset by Δ -isobars or meson condensates

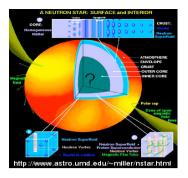
appearance of another degree of freedom that push Y onset to higher densities. It might (or not) reach 2M_{sun}

Δ


Drago et al '14 '15, Jie Li et al '19 ; Ribes et al '19... K condensate


Kaplan et al' 86, Brown et al '94; Thorsson et al '94; Lee '96; Glendenning et al '98..

IV. Quark matter below Y onset


early transition to quark matter below Y onset, with quarks providing enough repulsion to reach $2M_{sun}$ Weissenborn et al '11; Klaehn et al '13; Bonanno et al '12; Lastowiecki et al '12...

V. Others: modified gravity...

- We have presented the YN and YY interactions in dense matter for different approaches and, in particular, for χEFT
- Λ, Σ and Ξ interactions in nuclear matter have been investigated from χEFT at NLO (and with density-dependent 2-body forces for ΛNN), showing attraction for Λ, and repulsion for Σ and Ξ at low densities
- A feels little attraction or even repulsion for $n>n_0$ in χ EFT, pointing to a possible solution of the Hyperon Puzzle in neutron stars
- We have discussed the presence of hyperons in neutron stars and the possible solutions to the Hyperon Puzzle