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Vorticity



Very basic overview: Vorticity
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®B ®L

" TARGET
SPECTATORS

PROJECTILE
SPECTATORS

* |IL| ~ 10 h in non-central collisions

* Some fraction is transferred to mid-
rapidity

* How does that affect fluid/transport?

* Vorticity: = % V xv

* How would it manifest itself in data?



Vorticity — particle spin

* In a transport model polarization comes
from spin-orbit interaction of quarks
with local relative velocities in cell

— Analagous to Barnett effect

* In hydro
— Vorticity part of second order hydro
— Angular momentum is chemical potential

- At freezeout (e.g. Cooper-Frye) particle
momenta and spin must add to total L in

cell

* In both fluid cells local vorticity
statistically align to system L

emitted hadron
(color confined)

fluid cell at
freeze-out
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Experiment. measuring spin

* Spin % parity violating weak decays * Spin-1 vector mesons (e.g. phi, K*) also have
Lambda) are “self-analyzing” coupling of spin to angular momentum
(e.g. Lam JrAmE » Because there are now three possible spin states
* Reveal polarization by preferentially (+1, 0, -1) it is no longer as simple as projecting spin
emitting daughter proton in spin direction onto an axis, instead one has a 3x3 hermition spin
density matrix, p, such that tr(p) = 1.
dN 1 Due to the trace constraint, spin alignment means

_ =g _ 1 *
q0 _E(“O‘P'pz’)_a(“‘lpcose | that the diagonal elements of the matrix (p,_ ) deviate

.=0.642+0.013 [measured] from 1/3
Vector mesons decay strongly so elements p,, and

p.,, are degenerate, and only p,, is independent
Therefore spin alignment means p,, > 1/3 or p, <
1/3

dN
dcos0’
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Experiment: Angular momentum

* For spin-¥2 particles L Is
perpendicular to first-
order event plane (found
with forward detectors)

Spinning
Particles

'spectators |

* For spin-1 particles using
the second-order plane
also works



Additional considerations:

production plane

* Particles may also be K+ b
polarization along the /

direction of the
production plane — the /
plane spanned by beam

axis and the particle
momentum

Production
plane

Beam axis

» Equally true for spin %2 K
and vector mesons 7



Additional considerations:
Longitudinal polarization

beam direction

* Elliptic flow — expansion
IS greater in-plane than
out-of-plane

2"-order
event plane




Additional considerations:
Longitudinal polarization

beam direction

 Elliptic flow - expansion
IS greater in-plane than
out-of-plane

* This velocity gradiant —
vortices

2"-order
event plane

e Expect quadrupole
structure of spin projected
onto beam axis as a
function of emission angle - .




Chirality



Chirality basics

At sufficiently high temperatures quark masses are
negligible, making them chiral fermions

* The QCD Lagrangian does not explicitly conserve
Charge + Parity (CP), so, spontaneous excesses in chiral

fermions are possible

* The strength of the CP violation is poorly constrained and
IS generally represented by the Chern-Simon’s number
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Chiral Vortical Effect

At sufficiently high temperatures quark masses are
negligible, making them chiral fermions

* The QCD Lagrangian does not explicitly conserve
Charge + Parity (CP), so, spontaneous excesses in chiral

fermions are possible

* The strength of the CP violation is poorly constrained and
IS generally represented by the Chern-Simon’s number
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Chiral Vortical Effect (Il

* In a medium with nonzero chirality
(characterized by ;) neutral baryons (e.g.

Lambdas) will show a separation of baryon
number along the direction of the vorticity
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Spin alignment measurements of
vector mesons with ALICE detector
at the LHC

Sourav Kundu
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Analysis procedure

» Look for deviation of p,, from 1/3 for

- Vector mesons K* and ¢

— Production plane (pp), production plane (PbPb), event plane (PbPDb,
both 2.76TeV and 5.02TeV)

Quantization axis Quantization axis

K+

[~

Production
plane

Beam axis

o o o+ K

Reaction Beam axis

plane
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General approach

* Find vector mesons
and estimate mass
background with
mixed-event

o EXtract p,, by fitting
cos(6*) distribution
with

v

d[ CoS 9*]

= N, X| (1= p) +(1/ R)(3pyy~1) 0’6
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Results: pp production plane

o NO Spin alignment -I:Or QSO'G_IIIIAI_IICI:I_;;,JGII";I;";JV ||||||||||| T
. i \s=13TeV i
pp production plane VI

0.4

0.2— Production plane D

Uncertainties: stat. (bars), sys. (boxes) -

Sourav Kundu



Results: PbPDb
* Hint of deviation seen for PbPb =
production plane and PbPb event plane o3

at lowest pT bin for both particles o]

* Production plane results are consistent

with event plane results £
0.6
* K* deviation from 1/3 is larger than that
for .
— (@ deviation is 1.30 and 1.4¢ for production 0'4
and event plane
0.2

- K* deviation is 2.50 and 1.8c for production
and event plane

Sourav Kundu
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PbPb centrality dependence

e Centrality dependence of the deviation of the first pT bin
from zero Is consistent

K™ : production and event plane K™ and ¢: production plane
g 1T T | LI B | | L L | L | 8 | L I LI | W) i | | L |
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) Sy (TeV) p, (GeVic) | OK™, Pb-Pb |5, =2.76 TeV, 04 <p_<1.2GeV/c |
- W Production plane 2.76 04-12 n Mo, Pb-Pb sy, =2.76 TeV,0.5< p_<0.8 GeV/c
@ Production plane  5.02 08-1.2 - lyl<05 -
¥r Event plane 2.76 08-1.2 | 113 i
- s = 1/3 N Production plane
Uncertainties: stat. (bars), sys. (boxes) 0.4 Uncertainties: stat. (bars), sys. (boxes) —

0.4 4 -

- I | [P
I R

—]IIIIIIIII|IIII|IIII|_

0 100 200 300 400 0 100 200 300 N4°°
(N ( part> 19

Sourav Kundu




A\ Polarization in Au+Au collisions at
Vs, = 2.4 GeV Measured With

HADES

20
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HADES 2.4GeV Lambda Polarization

 Previous positive results have been at STAR (Vs = 7.7-200GeV) which
have been shown to rise with decreasing collision energy (there is also an
Important NULL result at ALICE)

— Currently theory calculations predict an increasing trend as beam-energy decreases
« These predictions do not specifically include HADES Vs,

- In principal, at some sufficiently low Vs, the polarization might decrease as the

interplay between the effectiveness of the spin-orbit coupling and the dropping
system angular momentum changes

* This is an important test of the model trend
» Strangeness production is significantly decreased at these energies, making
the measurement difficult

21
Frederic Kornas



Ingredients

* Very high-resolution first-
order event plane

e Sophisticated neural-net
Lambda reconstruction

60000

* Ultimately correlate spin

[2]

to angular momentum: 5«

O 30000¢

8 in(yY — h* 200002

P (centrality) = (sm( pr ¢p)> 10000
A EP

Frederic Kornas
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Methodology: EP vs. Invariant mass

(1) Event plane method ‘

(2) Invariant mass fit method

» GetdN/dM;,, in a certain A¢,-bin ‘

» Get net amount of As in that bin

» Plot the distribution of (sin(4¢;)),  asa

function of M,

d
tot

General o » Get S/B-ratio in each bin: f(M;,;,)
procedure » Plot distribution of N, (A¢y)
» Make assumption for (sin(4¢;))
» Fit this distribution to get (sin(A¢})) Ba
» Fit the distribution to get (sm(Aqb;;))SG
» Calculate P, ‘ » Calculate P,
Correction | » Finalresultis corrected by 1/Rgp while ‘ > 1/R}?g% in 10% centrality bins is weighted
for Rpp REO*%% s used event-by-event when filling (sin(4¢,)), .
|
Advantage/ | ~ D:second decomposition in Ag;-bins » A: direct extraction of (sin(4¢y)). .
Drawback

» A: no background assumption
Frederic Kornas

» D: background assumption needed 23



Results: EP

Fit the distribution of the polarization angle 4¢, = Ygp — ¢,

rr|rrrrrrrrprrrrrrro o]

. 9600 -
* Only sine terms should : b e o
. 9400% Pty | Sin-Terms
contribute = H - 1 Blue:
-é' 92001 “~ =| Cos-Terms
\h"'< [ ' it
Z 9000~
= N
8800[ P, [%] = 3.762 + 0.699 -
- x%ndf = 25.86/13 i
8600 . 1 .ol e b e L
0 50 100 150 200 250 300 350
A A To
o [
% = No[1+ 2by sin(A¢;) + 2¢; cos(Ag;) + 2b, sin(2A¢;) + 2¢, cos(2A¢;) + -+ ]
p

First order event
plane resolution

87y

= Py [%] =3.762 +0.699 (stat.) P=

Tap Ry
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Fit the distribution of (sin(A¢;)) . ——

Results: Invariant mass & «is" p putins
. 35000; c,=2.79%+0.03 g//gcf ;‘3;_20/32
5 30000
- T 25000(
* Make assumption for 2 2000
: * 15000
<S|n(A(pp )>BG 10000+
5000
. . 1095 1100 1105 1110 1115 1120 1125 1130 1135
* Results consistent with EP .
oo4f T T
(Sin(ﬂfbﬁ))mt = f(anv)(Sin(A¢5))SG 41 f(Minu))(Sin(A¢5))BG 0.03} gﬁf:f%émgf'v' 3
- entrality 10-40% .
+ ]
(Sil](AQbI;))BG =a +ﬁ : Minv & ) +
Py = —(sin(A¢,, 3 o
A T[C!A( ( qbp))gg % -0.01- PoolM ) =33 % 3
v -0-02;— u:(-i.32211.102}-1g‘ —
= P,4[%] = 3.548 + 0.754(stat.) 00 B o 0754
—0.04F, xondf =254127 0,
» Background shows non-zero correlations with 1100 1105 1110 1115 1120 1125 1130

maghnitude similar to the A signal! Frederic Kornas M., [MeV/c?



Background polarization

* Unfortunately, no deviation from background is
seen in HADES, unlike same method in STAR

Z/Q\\ Comparison to STAR @ /s, = 200GeV: iﬁST;I\R
Phys. Rev. C 98 (2018) 14910
oo4f- ' T T L IAARLEER = = 0001“ A ' A —zero BG
= HADES P . = ~
0.03F AusAU 1.23 AGeV - ?:- i . BG of a+pM_
- Centrality 10-40% ] 3>
0.02F + + + . = :
A oot | JELN ! a I J[ J( IR JT
R TN rr%ﬁ%@ by 1Tl |
O} """"""""""""""""""""""""""""""""""""""" = 0 % -‘I------- = %%-* {;ﬂ‘;&‘% %"f'""qf_;i‘ %"
~0.01 Pao(M,) = 3.3 % E . J[ T | H + + iﬁ* | | *
—0.02F ¢ =(-1.322+1.102) ¢ 10 E | !
_003F B=(1:260+0991)¢ 10 E i
- P, [%]=3.548 + 0.754 e -0.001 - (b
004 _gndl =25 Rr : T STAR 10%-80% (@) :
1100 1105 1110 1115 1120 1125 1130 K TR | R R ey T
M, [MeV/c?] M, [GeV/c?] M., [GeV/c’]

Frederic Kornas



Conclusion

» Due to large background &«
signal, after subtraction *
polarization Is zero Results: |

This analysis 4: 7
(Preliminary) [ '

@ @ £
Z 82 xt
SEE
] 2 2
- - =1

0 ,_ ______ HADES

e Systematic errors and — |

further studies to
understand background

polarization are ongoing

Frederic Kornas



Directed flow, Vorticity and A
Polarization in HIC

Oleksandr Vitiuk
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General outline

* Understand the mechanisms that take angular momentum
— particle polarization

e Use UrQMD with black disk approximation

* Monte Carlo method for probing time evolution of the
various phase space densities of particle species.

 Lambdas and AntiLambdas are produced at and emitted
from different positions in fireball

— This will have some effect on the flow and polarization of these

particles
29
Oleksandr Vitiuk



Thermal vorticity — particle spin — polarization

In local thermal equilibrium, the ensemble average of the spin vector for

spin-1/2 fermions with four-momentum p at space-time point x is
obtained from the statistical-hydrodynamical model as well as the Wigner

function approach and reads

1
SH(x, p) = “am (1 — np) P pyo (),

where the thermal vorticity tensor is given by

1
Wypy — 5 (al/)aﬂ - 8}1/81/)5
After some simplification one can get global polarization measure from statistical quantities

S%x, p) = ip ws, S(x,p)= 1(i':"crrs+|3><wr C> P = S*>).|\:II|

dm

30
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Local thermal equilibrium w/ UrQMD

Parameters can be found Total angular momentum is not
via conserved, but deviation is ~ 2%
Input from UrQMD: ( Stat. Physics: ) :E 59500~ ~ . _
5UfQMD = %ZE’ Cotat — ZS,‘(T,/JBH[Ls) o S sy R
PBurqmp = %;Bi PBatar = Zl_fBinf(T,uB,,us) _—
psUrQMD = %ZS’ psstat = ZS[”[(T,/.LB,/J,S) :‘
: : = \/ 58500/
X2 — surQM(Dﬂ Estat + ( o
(0B, 1 —PB, 2 i UrQMD-3.4, Au+Au, b = 6 fm
+ U'QM%B + Minuit2 numerical minimizer 58000/— {s = 7.7 GeV x 2.55
(PSyromp ~PSstat)” i - {s=11.5GeV x 1.70
T o2 ] I (s = 14.5 GeV x 1.35
[ ) i — — - {5=19.6 GeV
Output: 57500/~
T’MB’MS il | lél 1 1 11|01 11 l1lsl 1 1 12101 i 2]5 P | \30

\ Oleksandr Vitiuk t[fm/c]



Flow difference due to emission
regions

- At low energies A and A are

1 produced and emitted from the
.. same regions as protons and
antiprotons respectively. A's are
concentrated also near hot and
dense spectators, whereas N's are
mostly produced in central
region.

_I Ll 11 | 111 L1l T I N I I A A1 I__I | L1l | L1 | 111 | 11| | L1l | 11 I.l Ll | I.I I_
0 2 4 6 8 1012 14 0 2 4 6 8_ 10 12 14
t [fml]
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Spatial distribution of Lambdas

At /s = 19.6GeV A are mostly located near hot and dense regions and A
are distributed more uniformly near system center.

Au+Au, Vs =19.6 GeV t=15fm/c,b=6fm
| L | rTTT | rTTT | T - TT I TTTT | TTTT ‘ TTTT ‘ L I TTTT | TTTT |
£ . : L
= 15 A £15‘_ N A
(i3 - SA—
x EDEARIATS So < r A\,&_,k\f?\ A ?,“'f
Eﬂ\M\M\A A AT L ] r =y ﬁ p A M\A\ * -
M\Amr\/'\wﬂﬂﬂﬂw-ﬂw 1 r .«rm: Kl A R il
10 = 10 LlFsrersmiy mdataa —
il C D \[~ A A M i _10-6
\ 1107 C = 1
5 —= 5 P .
0 >N o & |
-5 = 10" 5 .kbébft\\l‘;i/v V\'Jv ) e 107
C N C 7R AA NI 1 1
L L P.r'."' - | PO
10k i 4ol e
10_ 10_ \\VU/\&WWW\V&NX&NNH“J
- - P 'V\V \l’ RN
" - ==
-15 15
r N 7 C . 10°
i | | . ‘ | I .| ‘ | - I 1111 | 111 | L1 11 | 11 10 C I 1111 | 1111 ‘ 1111 T | . I 1111 | | | 1|
—15 -10 -5 0 5 10 15 —15 -10 -5 0 5 10 15
Z [fm] z [fm] 33
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* At 7.7GeV the zx projection of
thermal vorticity is -0.04 and -0.017
for AntiLambda and Lambda
(respectively)

e At 19.6GeV thisis -0.011 and -0.009
for AntiLambda and Lambda
(respectively)

* Note that negative projection of
vorticity iIs a sign choice, it means
positive polarization

Oleksandr VitiuKo s
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Conclusion

—
o

Il

* Model predicts increasing

P [%]

UrQMD-3.4, Au+Au, b = 6 fm

gap_ of Lambda- o :g | A STAR A XSTAR
AntiLambda polarization i3 -
SyStem as beam energy 65_ I STAR data for 20-50% centrality
decreases (something st 14
hinted at in data) 4 T4

* This iIs somewnhat z: !

: SR S :

overpredicted, but general - b4 +
trend of data Is captured 07t — '

Oleksandr Vitiuk ¥ s [GeV]



Polarization of quarks and hadrons
IN heavy-ion collisions

Oleg Teryaev
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CHIRAL VORTICAL EFFECT AT A
FINITE MASS AND UNRUH
EFFECT FOR FERMIONS

George Prokhorov

Vorticity structure and helicity
separation in heavy-ion collision.

Aleksei Zinchenko 37



Outline

* Touches on wide array topics, including:

* Mechanism for transference of angular momentum to
guark polarization (using 4-velocity as gauge field)

* Why is the polarization so small?

* Should the polarization of Lambdas equal that of
AntiLambdas?

 Structure of vorticity in PHSD and QGSM transport
models
Oleg Teryaev
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Strength of polarization

* Polarization proportional to anomalously induced axial
current

. 2 un
o~ (1 - S NN
sy ( 3(e+P>)E H

* Here n and € correspond the charge and energy densities
and P Is the pressure

* Therefore, the p-dependence of the polarization has to be
more strong than that of CVE leading to the effect rapidly

Increasing with decreasing energy
Oleg Teryaev
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Quark polarization — hadron polarization

* Axial charge here plays a role analagous to Cooper-Frye
freezeout in hydro

- Polarization of quarks is achieved via triangle anomaly

- Axial current: charge - polarization vector
N , (7
]’n’]’“(“)’pn — )p(:(—v)?? A 3 3 Z” ! @n = [(151 ]d(“ \T)
N N
— After boost helicity changes sign above/below RP

\
\.lab A.lab A.lab Alab Alab Hll '
Ir (Hll H t Hy | ‘H: ( ) — m (pu 0, Po; “)
Alab =
my I M . ma N
<} >= = ——>Qf =< — > 5 > | &z pi(z) v e v;0up
' Py A A Py Na Py 212 . 40
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Specles dependence

* From the last slide, polarization is proportional to
total axial charge and the inverse of number

A lat
ma Iy My

< H;} - Y — =<r= >1Qs
" Py

* Anti-hyperons have the same axial charge, but
smaller number, thus they should have larger
polarization than hyperons

— This effect increases and beam energy is decreased

41
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Size of polarization gap

e At very low energies this number discrepency is much too large
and would lead to too big a gap

e Strange axial charge may be also carried by K* mesons

* N\ - accompanied by (+,anti 0) K* mesons with two sea quarks —
small corrections

* Anti A — more numerous (-,0) K* mesons with single(sea) strange
antiquark

e S0, gap is mitigated by existence of vector mesons

* Note that STAR BES data shows just the slightest hint of a gap (at
~1.50 averaged over the BES data)
Oleg Teryaev
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Higher orders of the Chiral vortical

effect

 CVE Is the appearance of axial current in a

rotating medium, directed along the vorticity
.5 ™ op
g =\ 6 2?.‘,2)5’*"&
* This can be generalized to include acceleration
and higher moments of the vorticity at zero
mass

~ 1 o2 2 2 ] 3 nsin
{Qﬁ) = (T [Tz — I_.]] + - : )Wp +O(=”). (4)} comparison to standard
i

Iy ¢ J_') I s P .\\.
272 o ¥I CVE in Eq. (1).
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Higher order CVE (ll)

 Comparisons with hydro coefficients allow
George to generalize the finite mass case

(. ©dPp |w] |w] \ .
(JU?) = (Q?T)B {RF(EP — i — ?) — nP(Ep — 1+ 7) + All rhel ltffj;nertf{ertceluf ?Vﬁ
) on musl;ls ut,u.m;u—;:recz in
w W , energy F, = \/p*+ m?.
np(E, + 1 — |2|) —np(E, +p+ |)‘ )} % , w] =V —w?. ’
\ - ot J

George Prokhorov



Higher order CVE (lll)

* If angular velocity enters
as a chemical potential

==
one can see the axial
CUI’I’ent dlSS&pear fOI’ The appearance of the angular velocity as a chemical
Sma” angular momentum potential leads to the vanishing of axial current in the

. . limit T' — () in the region |w| < 2(m — _
and chemical potiaal wl < 2(m —ul)

45
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Transport model calculations

* Vortex sheet surrounding fireball is seen in both
PHSD and QGSM

.Iu‘l“\ i

a)
Figure: 1. Vortex sheet in PHSD a) and QGSM b).

Oleg Teryaev and Aleksei Zinchenko
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Hubble expansion

 PHSD evolution follows general Hubble

. v=v,+Hp
expansion e
P b A
_ L e
= ,,,// //
- / .,9"/
- - ,.,f/
C P .
= L g ‘,/'/
~ o~

Oleq Tervaev and Aleksei Zinchenko 7™ p (fm)



Quadrupole structures

* Seen for longitudinal polarization (as expected)

t=2.5t_ t=6t_
-1.25<z<1.25 (fm) -1.25<z<1.25 (fm)
10 4
5,
£,
>
54
-10-

X (fm)
Oleqg Tervaev and Aleksei Zinchenko

X (fm)

o, (fm™)

Y (fm)

Y (fm)

10 - - »
- -
g et
5 £N AT o MIZTAN N
o/ -\ 277 ¥ )
/. Py ryyra | N
/% \ st ¥\
iy '\\\ fne § 1
:: ;ri/ .- !:
(] 0: :‘I ’!
‘\\ H {, -~-a t’\
v e = ’
L - e - -
anehe=gl? | CRRSe=LAuiss
NN -
\\\\\\\ -
NS DO -
R - 8
! E v
R S.J 3
¥ B -~ A
P - \
5 / — P L BN
@)

z=-1.5 fm, t=2.5t_

z=1.5fm, t=2.5tC

(o,.0)
020
0.18

0,12
0,10
0,08
0,06

0,00

0]
z

0,02

|
001

-0,02

-0,03



PHSD helicity separation

* Helicity
separation in
octants of
fireball
Increases with
time

—— H+++ ——H,, p,>0
. —s— H-++ 190 —s—H, p =0
—a— H+-+ ¥
—— Ht4- 100+ ——H, p,=0
40 —— H—t 50 ——H, p,<0
—— :-+- a0 —— H-,- F‘-,"U
—— H+--
20 4 He 40 —+—H, p <0
o ——H i 20 He
™~ ™, _ -
E o E
v 0 b 0
NE’ N‘E’
T T -20-4
20 4 40
60
40 80
-100
£0 . . . . -120
a 5 10 15 20 1 5 10 15 20
t (fmic) t (fric)

Figure: 10. a) Helicity (H (fm? ¢?)) separation relative to spatial octants (impact
parameter b = 7 fm). +++ means that integration is in octant x > 0, y > 0,

z>0and — — —-x <0,y <0, z< 0respectively. b) Helicity (H (fm? ¢?))
separation relative to y- component of momentum (impact parameter b = 7 fm).
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QGSM calculation

* In QGSM calculation A
polarization is well 5l
described 10

* PHSD In progress

HADES data?

Aleksel Zinchenko

E

-2

* Does this rapid rise match

»x Data STAR
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