

1

Chirality and Vorticity at SQM 2019

Isaac Upsal SDU/BNL 06/14/19

Vorticity

[•] How would it manifest itself in data?

Vorticity → particle spin

- In a transport model polarization comes from spin-orbit interaction of quarks with local relative velocities in cell
 - Analagous to Barnett effect
- In hydro
 - Vorticity part of second order hydro
 - Angular momentum is chemical potential
 - At freezeout (e.g. Cooper-Frye) particle momenta and spin must add to total L in cell
- In both fluid cells local vorticity statistically align to system L

Experiment: measuring spin

- Spin ½ parity violating weak decays (e.g. Lambda) are "self-analyzing"
 - Reveal polarization by preferentially emitting daughter proton in spin direction

$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha \vec{P} \cdot \hat{p}_p^* \right) = \frac{1}{4\pi} \left(1 + \alpha P \cos \theta^* \right)$$

$$\alpha = 0.642 \pm 0.013 \quad \text{[measured]}$$

- Spin-1 vector mesons (e.g. phi, K*) also have coupling of spin to angular momentum
- Because there are now three possible spin states (+1, 0, -1) it is no longer as simple as projecting spin onto an axis, instead one has a 3x3 hermition spin density matrix, ρ , such that tr(ρ) = 1.
- Due to the trace constraint, spin alignment means that the diagonal elements of the matrix (ρ_{nn}) deviate from 1/3
- Vector mesons decay strongly so elements ρ_{11} and ρ_{-1-1} are degenerate, and only ρ_{00} is independent
- Therefore spin alignment means $\rho_{00} > 1/3$ or $\rho_{00} < 1/3$

$$\frac{dN}{d\cos\theta^{*}} = N_{0} \left(1 - \rho_{00} \cos\theta^{*} (3\rho_{00} - 1) \right)$$

Experiment: Angular momentum

 For spin-½ particles L is perpendicular to firstorder event plane (found with forward detectors)

 For spin-1 particles using the second-order plane also works

Additional considerations: production plane

- Particles may also be polarization along the direction of the production plane – the plane spanned by beam axis and the particle momentum
- Equally true for spin ½ and vector mesons

Additional considerations: Longitudinal polarization

 Elliptic flow → expansion is greater in-plane than out-of-plane

Additional considerations: Longitudinal polarization

- Elliptic flow → expansion is greater in-plane than out-of-plane
- This velocity gradiant → vortices
- Expect quadrupole structure of spin projected onto beam axis as a function of emission angle

Chirality

Chirality basics

- At sufficiently high temperatures quark masses are negligible, making them chiral fermions
- The QCD Lagrangian does not explicitly conserve Charge + Parity (CP), so, spontaneous excesses in chiral fermions are possible
- The strength of the CP violation is poorly constrained and is generally represented by the Chern-Simon's number

Chiral Vortical Effect

- At sufficiently high temperatures quark masses are negligible, making them chiral fermions
- The QCD Lagrangian does not explicitly conserve Charge + Parity (CP), so, spontaneous excesses in chiral fermions are possible
- The strength of the CP violation is poorly constrained and is generally represented by the Chern-Simon's number

Chiral Vortical Effect (II)

• In a medium with nonzero chirality (characterized by μ_5) neutral baryons (e.g. Lambdas) will show a separation of baryon number along the direction of the vorticity

Spin alignment measurements of vector mesons with ALICE detector at the LHC

Analysis procedure

- Look for deviation of $\rho_{\scriptscriptstyle 00}$ from 1/3 for
 - Vector mesons K* and $\boldsymbol{\phi}$
 - Production plane (pp), production plane (PbPb), event plane (PbPb, both 2.76TeV and 5.02TeV)

General approach

- Find vector mesons and estimate mass background with mixed-event
- Extract ρ₀₀ by fitting cos(θ*) distribution with

Results: pp production plane

• No spin alignment for pp production plane

Results: PbPb

- Hint of deviation seen for PbPb production plane and PbPb event plane at lowest pT bin for both particles
- Production plane results are consistent with event plane results
- K* deviation from 1/3 is larger than that for $\boldsymbol{\phi}.$
 - ϕ deviation is 1.3 σ and 1.4 σ for production and event plane
 - K* deviation is 2.5 σ and 1.8 σ for production and event plane

Sourav Kundu

18

PbPb centrality dependence

 Centrality dependence of the deviation of the first pT bin from zero is consistent

\land Polarization in Au+Au collisions at √s_{NN} = 2.4 GeV Measured With HADES

HADES 2.4GeV Lambda Polarization

- Previous positive results have been at STAR ($\sqrt{s_{NN}} = 7.7-200$ GeV) which have been shown to rise with decreasing collision energy (there is also an important NULL result at ALICE)
 - Currently theory calculations predict an increasing trend as beam-energy decreases
 - These predictions do not specifically include HADES $\sqrt{s}_{\mbox{\tiny NN}}$
 - In principal, at some sufficiently low $\sqrt{s_{_{NN}}}$ the polarization might decrease as the interplay between the effectiveness of the spin-orbit coupling and the dropping system angular momentum changes
- This is an important test of the model trend
- Strangeness production is significantly decreased at these energies, making the measurement difficult

Ingredients

- Very high-resolution firstorder event plane
- Sophisticated neural-net Lambda reconstruction
- Ultimately correlate spin to angular momentum:

to angular momentum:

$$P_{\Lambda}(centrality) = \frac{8}{\pi \alpha_{\Lambda}} \frac{\langle sin(\Psi_{EP} - \phi_{p}^{*}) \rangle}{R_{EP}}$$
Frederic Kornas

 $N_{A} = 300577 \pm 548$

 χ^2 /ndf = 100.41/32

S/B = 2.01

 $\mu = 1114.72 \pm 0.01$

 $60000 \vdash \sigma_{\Lambda} = 2.89 \pm 0.03$

50000

(D

Methodology: EP vs. Invariant mass

	(1) Event plane method	(2) Invariant mass fit method
General procedure	 Get dN/dM_{inv} in a certain Δφ[*]_p-bin Get net amount of Λs in that bin Plot distribution of N_Λ(Δφ[*]_p) Fit this distribution to get (sin(Δφ[*]_p)) Calculate P_Λ 	 Plot the distribution of (sin(Δφ_p[*]))_{tot} as a function of M_{inv} Get S/B-ratio in each bin: f(M_{inv}) Make assumption for (sin(Δφ_p[*]))_{BG} Fit the distribution to get (sin(Δφ_p[*]))_{SG} Calculate P_Λ
Correction for <i>R_{EP}</i>	Final result is corrected by $1/R_{EP}$ while $R_{EP}^{10-40\%}$ is used	> $1/R_{EP}^{10\%}$ in 10% centrality bins is weighted event-by-event when filling $\langle sin(\Delta \phi_p^*) \rangle_{tot}$
Advantage/ Drawback	 D: second decomposition in Δφ[*]_p-bins A: no background assumption Frederic Kornas 	 A: direct extraction of $\langle sin(\Delta \phi_p^*) \rangle_{SG}$ D: background assumption needed

Results: EP

 Only sine terms should contribute

9600 HADES Green: Au+Au @ 1.23AGeV 10-40% Centrality Sin-Terms 9400 Preliminary $dN_A/d\Delta \phi_p^A$ Blue: 9200 **Cos-Terms** 9000 8800 P_{Λ} [%] = 3.762 ± 0.699 χ^2 /ndf = 25.86/13 8600 50 100 150 200 250 300 350 $\Delta \phi_{\rm p}^{\Lambda}$ [°] $\frac{dN}{d\Delta\phi_p^{\Lambda}} = N_0 \left[1 + 2b_1 \sin(\Delta\phi_p^*) + 2c_1 \cos(\Delta\phi_p^*) + 2b_2 \sin(2\Delta\phi_p^*) + 2c_2 \cos(\tilde{2}\Delta\phi_p^*) + \cdots \right]$ First order event $P_{\Lambda} = \frac{8}{\pi \alpha_{\Lambda}} \frac{b_1}{R_1}$ plane resolution $\Rightarrow P_{\Lambda} [\%] = 3.762 \pm 0.699 (stat.)$

Fit the distribution of the polarization angle $\Delta \phi_p^* = \Psi_{EP} - \phi_p^*$

Frederic Kornas

Fit the distribution of $\langle sin(\Delta \phi_p^*) \rangle$

Results: invariant mass

- Make assumption for $<\sin(\Delta \phi_p^*)>_{BG}$
- Results consistent with EP

$$\left\langle \sin(\Delta \phi_p^*) \right\rangle_{tot} = f(M_{inv}) \left\langle \sin(\Delta \phi_p^*) \right\rangle_{SG} + (1 - f(M_{inv})) \left\langle \sin(\Delta \phi_p^*) \right\rangle_{BG}$$

$$\left\langle \sin(\Delta \phi_p^*) \right\rangle_{BG} = \alpha + \beta \cdot M_{inv}$$

$$\left\langle \sin(\Delta \phi_p^*) \right\rangle_{SG}$$

 $\Rightarrow P_{\Lambda}[\%] = 3.548 \pm 0.754(stat.)$

Background shows non-zero correlations with magnitude similar to the Λ signal! Frederic Kornas

Background polarization

• Unfortunately, no deviation from background is seen in HADES, unlike same method in STAR

Conclusion

- Due to large background signal, after subtraction polarization is zero
- Systematic errors and further studies to understand background polarization are ongoing

Directed flow, Vorticity and Λ Polarization in HIC

General outline

- Understand the mechanisms that take angular momentum $\ensuremath{\rightarrow}$ particle polarization
- Use UrQMD with black disk approximation
- Monte Carlo method for probing time evolution of the various phase space densities of particle species.
- Lambdas and AntiLambdas are produced at and emitted from different positions in fireball
 - This will have some effect on the flow and polarization of these particles

Thermal vorticity \rightarrow particle spin \rightarrow polarization

In local thermal equilibrium, the ensemble average of the spin vector for spin-1/2 fermions with four-momentum p at space-time point x is obtained from the statistical-hydrodynamical model as well as the Wigner function approach and reads

$$S^{\mu}(x,p) = -rac{1}{8m} \left(1-n_F
ight) \epsilon^{\mu
u
ho\sigma} p_{
u} arpi_{
ho\sigma}(x),$$

where the thermal vorticity tensor is given by

$$arpi_{\mu
u} = rac{1}{2} \left(\partial_
u eta_\mu - \partial_\mu eta_
u
ight),$$

After some simplification one can get global polarization measure from statistical quantities

$$S^{0}(x,p) = \frac{1}{4m} \mathbf{p} \cdot \boldsymbol{\varpi}_{S}, \quad \mathbf{S}(x,p) = \frac{1}{4m} \left(E_{p} \boldsymbol{\varpi}_{S} + \mathbf{p} \times \boldsymbol{\varpi}_{T} \right) \qquad P = \frac{\left\langle \mathbf{S}^{*} \right\rangle \cdot \mathbf{J}}{\left| \left\langle \mathbf{S}^{*} \right\rangle \left| \left| \mathbf{J} \right| \right|}$$

$$Oleksandr Vitiuk$$

$$30$$

Local thermal equilibrium w/ UrQMD

Parameters can be found via

Total angular momentum is not conserved, but deviation is $\sim 2\%$

Flow difference due to emission regions

At low energies Λ and $\overline{\Lambda}$ are produced and emitted from the same regions as protons and antiprotons respectively. A's are concentrated also near hot and dense spectators, whereas $\overline{\Lambda}$'s are mostly produced in central region.

Spatial distribution of Lambdas

At $\sqrt{s} = 19.6 GeV \Lambda$ are mostly located near hot and dense regions and $\overline{\Lambda}$ are distributed more uniformly near system center.

Vorticity comparison

- At 7.7GeV the zx projection of thermal vorticity is -0.04 and -0.017 for AntiLambda and Lambda (respectively)
- At 19.6GeV this is -0.011 and -0.009 for AntiLambda and Lambda (respectively)
- Note that negative projection of vorticity is a sign choice, it means positive polarization

Conclusion

- Model predicts increasing gap of Lambda-AntiLambda polarization system as beam energy decreases (something hinted at in data)
- This is somewhat overpredicted, but general trend of data is captured

Polarization of quarks and hadrons in heavy-ion collisions

This talk also references the following posters:

CHIRAL VORTICAL EFFECT AT A FINITE MASS AND UNRUH EFFECT FOR FERMIONS

George Prokhorov

Vorticity structure and helicity separation in heavy-ion collision.

Outline

- Touches on wide array topics, including:
- Mechanism for transference of angular momentum to quark polarization (using 4-velocity as gauge field)
- Why is the polarization so small?
- Should the polarization of Lambdas equal that of AntiLambdas?
- Structure of vorticity in PHSD and QGSM transport models

Strength of polarization

 Polarization proportional to anomalously induced axial current

$$j_A^{\mu} \sim \mu^2 \left(1 - \frac{2 \ \mu \ n}{3 \ (\epsilon + P)} \right) \ \epsilon^{\mu\nu\lambda\rho} \ V_{\nu} \ \partial_{\lambda}V_{\rho}$$

- Here n and ε correspond the charge and energy densities and P is the pressure
- Therefore, the μ -dependence of the polarization has to be more strong than that of CVE leading to the effect rapidly increasing with decreasing energy

Quark polarization \rightarrow hadron polarization

- Axial charge here plays a role analagous to Cooper-Frye freezeout in hydro
 - Polarization of quarks is achieved via triangle anomaly
 - Axial current: charge \rightarrow polarization vector

Species dependence

- From the last slide, polarization is proportional to total axial charge and the inverse of number $<\Pi_0^{\Lambda}>=\frac{m_{\Lambda}\Pi_0^{\Lambda,lab}}{p_y}=<\frac{m_{\Lambda}}{N_{\Lambda}p_y}>Q_5^{s}$
- Anti-hyperons have the same axial charge, but smaller number, thus they should have larger polarization than hyperons
 - This effect increases and beam energy is decreased

Size of polarization gap

- At very low energies this number discrepency is much too large and would lead to too big a gap
- Strange axial charge may be also carried by K* mesons
- Λ accompanied by (+,anti 0) K* mesons with two sea quarks small corrections
- Anti Λ more numerous (-,0) K* mesons with single(sea) strange antiquark
- So, gap is mitigated by existence of vector mesons
- Note that STAR BES data shows just the slightest hint of a gap (at $\sim 1.5\sigma$ averaged over the BES data)

Higher orders of the Chiral vortical effect

• CVE is the appearance of axial current in a rotating medium, directed along the vorticity

$$j^{5}_{\mu} = \left(\frac{T^2}{6} + \frac{\mu^2}{2\pi^2}\right)\omega_{\mu}$$

 This can be generalized to include acceleration and higher moments of the vorticity at zero mass

$$\langle j_{\mu}^{5} \rangle = \left(\frac{1}{6} \left[T^{2} - \frac{\omega^{2}}{4\pi^{2}}\right] + \frac{\mu^{2}}{2\pi^{2}} - \frac{a^{2}}{8\pi^{2}}\right) \omega_{\mu} + \mathcal{O}(\varpi^{5}).$$
(4) In red: new terms in comparison to standard CVE in Eq. (1).

Higher order CVE (II)

• Comparisons with hydro coefficients allow George to generalize the finite mass case

$$\langle j_{\mu}^{5} \rangle = \int \frac{d^{3}p}{(2\pi)^{3}} \Big\{ n_{F}(E_{p} - \mu - \frac{|\omega|}{2}) - n_{F}(E_{p} - \mu + \frac{|\omega|}{2}) + n_{F}(E_{p} + \mu - \frac{|\omega|}{2}) - n_{F}(E_{p} + \mu + \frac{|\omega|}{2}) \Big\} \frac{\omega_{\mu}}{|\omega|}, \ |\omega| = \sqrt{-\omega^{2}} \,.$$
(6)

All the dependence of CVE on mass is accumulated in energy $E_p = \sqrt{p^2 + m^2}$.

Higher order CVE (III)

• If angular velocity enters as a chemical potential

 $\mu \rightarrow \mu \pm \frac{|\omega|}{2}$

one can see the axial current dissapear for small angular momentum and chemical potiaal

The appearance of the angular velocity as a chemical potential leads to the vanishing of axial current in the limit $T \to 0$ in the region $|\omega| < 2(m - |\mu|)$.

Transport model calculations

 Vortex sheet surrounding fireball is seen in both PHSD and QGSM

Hubble expansion

 PHSD evolution follows general Hubble $v = v_0 + H\rho$

Oleg Teryaev and Aleksei Zinchenko

47

Quadrupole structures

Seen for longitudinal polarization (as expected)

PHSD helicity separation

 Helicity separation in octants of fireball increases with time

Figure: 10. a) Helicity (H ($fm^2 c^2$)) separation relative to spatial octants (impact parameter b = 7 fm). +++ means that integration is in octant x > 0, y > 0, z > 0 and - - - x < 0, y < 0, z < 0 respectively. b) Helicity (H ($fm^2 c^2$)) separation relative to y- component of momentum (impact parameter b = 7 fm).

Oleg Teryaev and Aleksei Zinchenko

QGSM calculation

- In QGSM calculation polarization is well described
- PHSD in progress
- Does this rapid rise match HADES data?

50

END