## Update on Luminosity monitoring for HL-LHC

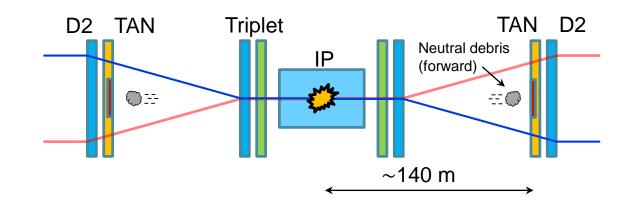
M. Palm (BE-BI-PM)



8th HL-LHC Collaboration Meeting

### Outline

- BRAN: HL-LHC luminosity monitor
- Results & observations
  - Fused silica
  - Aluminum mirrors
- Design considerations




### Outline

- BRAN: HL-LHC luminosity monitor
- Results & observations
  - Fused silica
  - Aluminum mirrors
- Design considerations



### **Overview**



• Where: machine luminosity monitors around all IP1, IP2, IP5, IP8

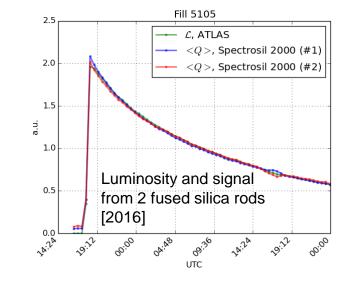
- Use cases: Finding collisions, backup instrument for OP (if no data from experiments), cross-check experiments, sanity check, ...
- Precision: ~1% @ 1 Hz (absolute luminosity not necessary)
- Challenges:
  - Large dynamic range
  - IP1 & IP5: radiation (180 MGy/year), limited space in TAN (only 5 cm width)
- HL-LHC upgrade: Cherenkov radiation based monitors

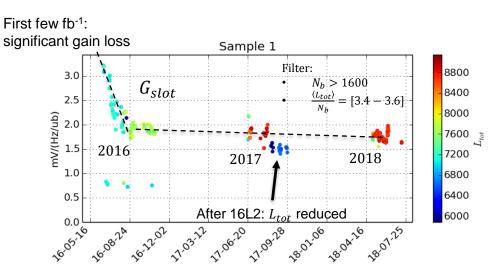


### **HL-LHC BRAN prototype**






### Outline


- BRAN: HL-LHC luminosity monitor
- Results & observations
  - Fused silica
  - Aluminum mirrors
- Design considerations



### **General performance**

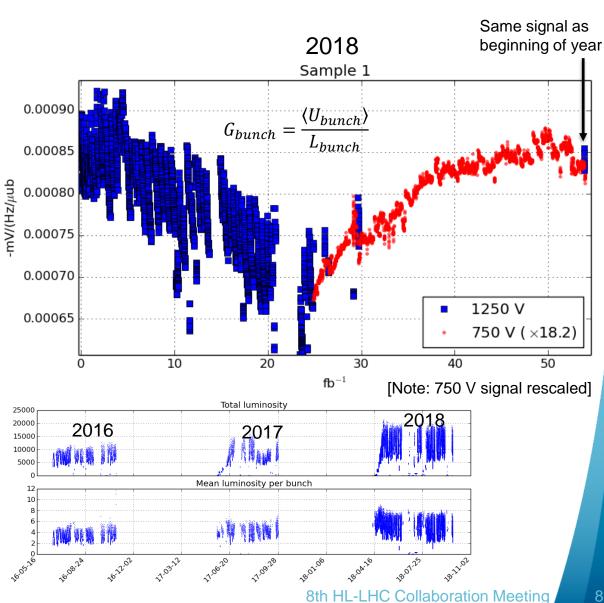
 Good agreement between prototype voltage-integral and ATLAS luminosity





• Signal gain:

• 
$$G_{\text{slot}} = \frac{\langle U_{\text{slot}} \rangle}{L_{tot}/N_b}$$


 Fairly stable gain from mid-2016 until today



# **PMT** saturation

- Gain loss during 2018
- Prototype: light yield on PMT cannot be easily tuned  $\rightarrow$ Change voltage instead (1250 V  $\rightarrow$ 750 V)
- PMT recovered!
- Gain returned (slowly) to initial level
- Gain variation during fill stabilized: from ~10% to ~1% variation





### **Radiation effects - Transmission**

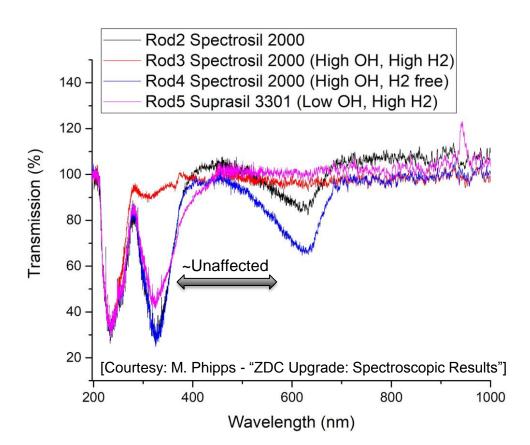
- Main radiation concern: reduced optical transmission
- 4 rods recuperated from TAN after 1-2 years of LHC operation
  - No visible discoloration or opacity (by eye)
- Shipped to ZDC group at University of Illinois for measurements



Unirradiated Irradiated

ZDC Quartz rods

[Courtesy: M. Phipps - "ZDC Upgrade: Spectroscopic Results"]


#### BRAN Fused silica rods (irradiated)



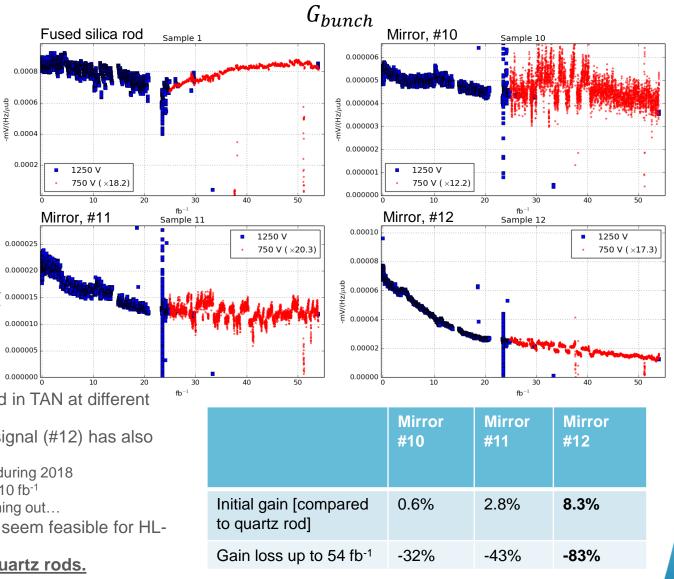
8th HL-LHC Collaboration Meeting

### **Measured rod transmission**

- Sharp absorption centers in UV range (214 nm, 325 nm
  - Most of the Cherenkov light is in this region
- Broad absorption around 630 nm
- Note:
  - Rod #3 (red) only exposed during 2016.
    1.5 years of annealing.
  - Other rods: 2016-2017, 0.5 years of annealing
- Conclusion
  - Quartz type matters...
  - Visible range will still provide a signal even if UV transmission should drop to 0.
    "Signal floor"






### Outline

- BRAN: HL-LHC luminosity monitor
- Results & observations
  - Fused silica
  - Aluminum mirrors
- Design considerations



# **Aluminum mirrors**





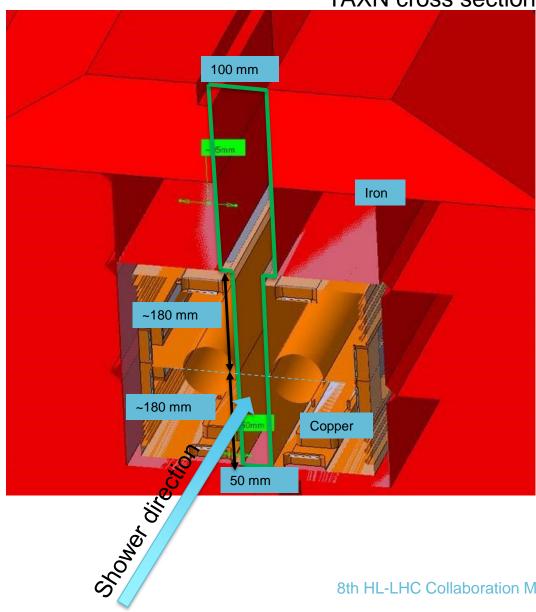
 3 Al-mirrors installed in TAN at different heights

duµ/zH)//m

- Mirror with largest signal (#12) has also degraded the most
  - >80% gain loss during 2018
  - Currently: -20%/10 fb<sup>-1</sup>
  - No sign of flattening out...
- $\rightarrow$  Al-mirrors do not seem feasible for HL-LHC
- $\Rightarrow$  We will go for quartz rods.



## Outline

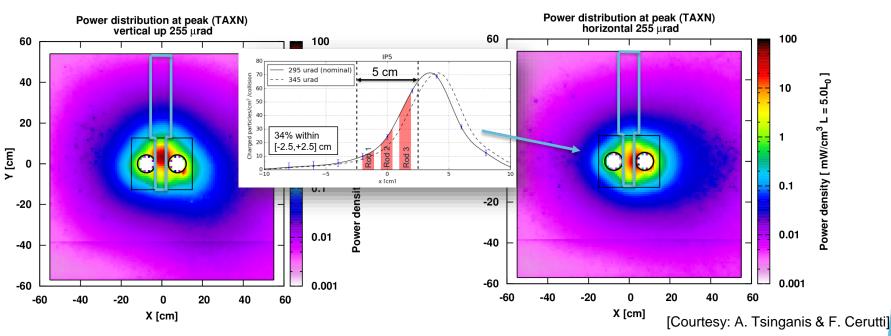

- BRAN: HL-LHC luminosity monitor
- Results & observations
  - Fused silica
  - Aluminum mirrors
- Design considerations
  - Available space
  - X-ing angle
  - Dynamic range



### **Available space**

#### TAXN cross section

- 50 mm available between beam pipes
- 100 mm available above copper block

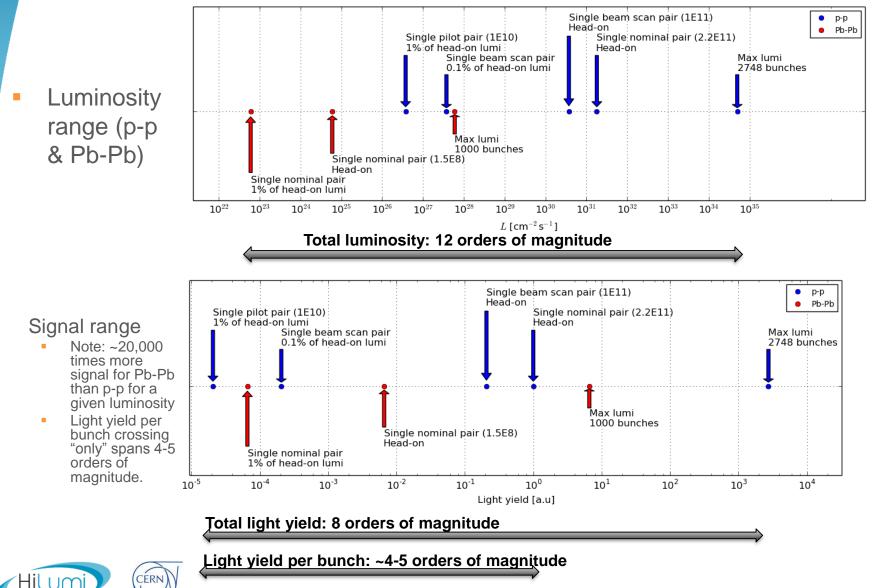





### X-ing angle

#### Vertical X-ing

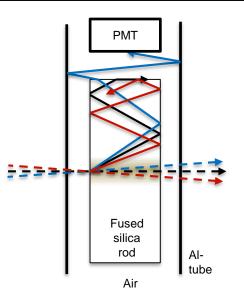
#### Horizontal X-ing




- Vertical X-ing: Shower is centered between beam pipes.
  - Change of X-ing angle will have little impact on BRAN signal (%-level)
- Horizontal X-ing: Dose peak is outside 50 mm gap
  - Change of X-ing angle will change BRAN signal amplitude, which is indistinguishable from a change in luminosity
  - Not feasible to compensate for this by measuring X-ing angle
  - In addition: dose rate in left/right rods is different => transmission will change at different rate => many recalibrations would be needed before transmission is stabilized

- Above copper block: 100 mm space available
  - ... but profile is also much wider => less precision
  - Dose rate ~3 orders of magnitude lower => Rod transmission would continuously degrade during first ~1000 fb<sup>-1</sup>, instead of during first ~10 fb<sup>-1</sup>.
  - Very impractical.
- Conclusion: for horizontal X-ing, the measured BRAN luminosity will have a X-ing angle dependence




# **Dynamic range (1)**



## **Available signal**

- Light from particles going exactly forward won't reach PMT (total internal reflection at top)
  - Light extraction efficiency is pretty low
  - Angular divergence of charged secondaries ≠0
  - Each collision at μ=138 generates light equivalent to 2 million PMT "counts"
- →We can have as much signal as we need
  - Light yield on PMT can be tuned by adjusting Rod-PMT gap

| Track length/event (charged particles)<br>@ Dose peak                | 98 cm/cm <sup>3</sup>           |
|----------------------------------------------------------------------|---------------------------------|
| Photon yield, quartz                                                 | 1003<br>photons/cm <sup>3</sup> |
| Equivalent PMT counts (incl. QE)                                     | 145<br>counts/cm <sup>3</sup>   |
| PMT counts/event                                                     | 14210                           |
| Nominal pile-up, HL-LHC                                              | 138                             |
| PMT counts/crossing<br>(1 cm <sup>3</sup> fused silica at dose peak) | => 2,000,000                    |

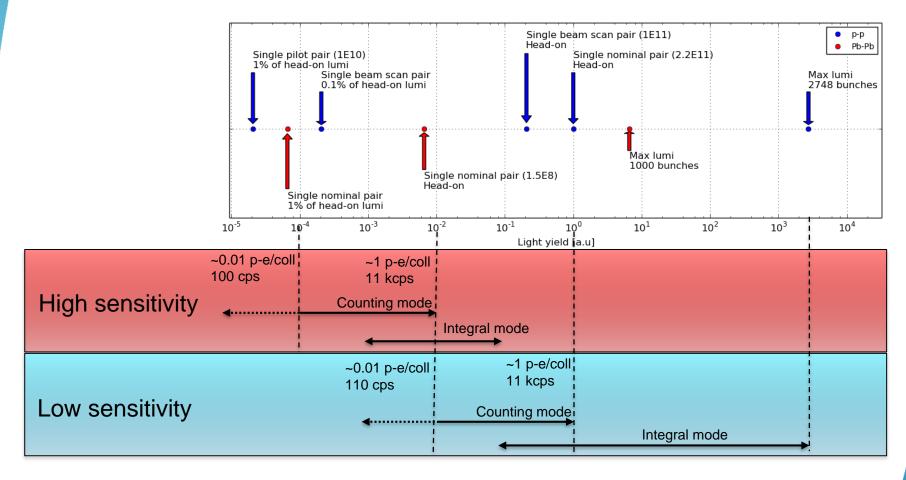


### **Design considerations: summary**

- Fused silica rods/Aluminum mirrors?
- X-ing angle dependence (horizontal)
  - We have to live with it.
  - Make sure operators know about it.
- Physical space constraints
  - Difficult to fit more than two parallel quartz rods + PMT + "cross-talk shielding" in 50 mm
- Dvnamic range
  - 4-5 orders of magnitude in terms of photons/collision should be covered
  - 3.5 orders of magnitude more from number of bunches
- Available light
  - If we extract a sufficient fraction of light from the quartz rod to the PMT, we can cover a very large dynamic range
- Transmission loss
  - Almost all observed transmission loss of fused silica occurs within first ~10 fb<sup>-1</sup>, but then remains stable.
  - Foresee (manual) adjustment of light yield e.g. at first technical stop after installation.
  - Design constraint: this should be quick and simple!
- Also: If we can't handle X-ing angles very well, then we should at least make sure that the BRAN has an "impressive" dynamic range.

- Warning: the TAN/TAXN is a beast against which many detectors have failed
  - "Simple but reliable" better than "Perfect but complex"





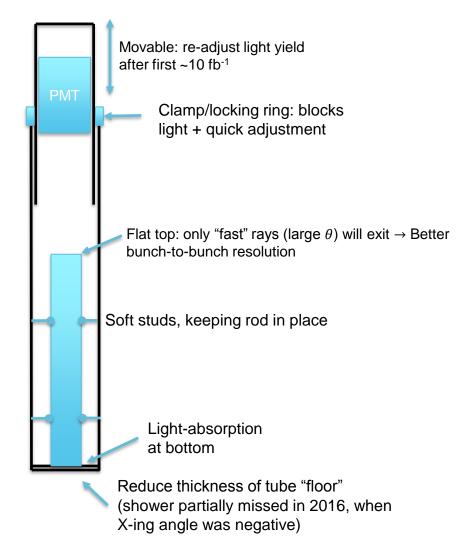

## **Channel configuration**

[Top view] Tight fit between beam pipes: reduce quartz rod diameter from 10 to 5 mm High sensitivity 6 Low-sensitivity channels Low sensitivity = Multiple backup channels Working point: Physics, high bunch luminosity Coincidence counting between equal-dose rods 2 High-sensitivity (left/right) possible channels Working point: finding collision, Shower direction low- $\mu$  runs



### **Channel sensitivity range**




p-e = photoelectron cps = counts per second



8th HL-LHC Collaboration Meeting

### Low sensitivity channel

 Current prototype serves as baseline for precise light yield estimates and dimensions







# **High sensitivity channels**

- PMT will be killed if not shielded at high luminosity
  - Add pullsolenoid shutter
- Light yield tuning:
  - PMT-Rod distance
  - Graduated iris diaphragm

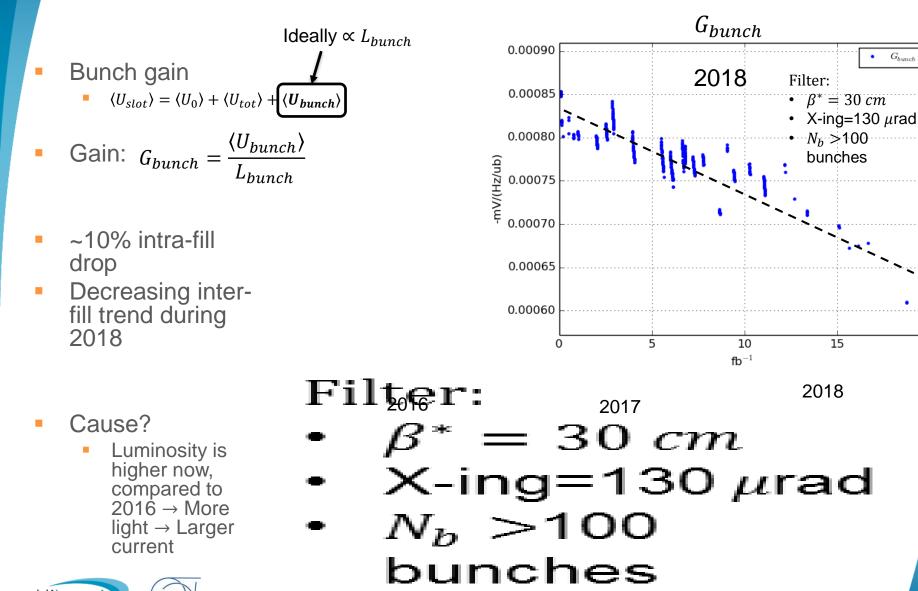




# Summary

- Fused silica is a feasible Cherenkov medium for the TAXN environment
- Aluminum mirrors still degrading
- X-ing angle dependence at IP1
  - Make sure OP is aware
  - Cosmetics: apply X-ing angle dependent scaling factor
- HL-LHC BRAN will measure luminosity over 12 orders of magnitude




### Thank you for your attention







# **PMT saturation (1)**

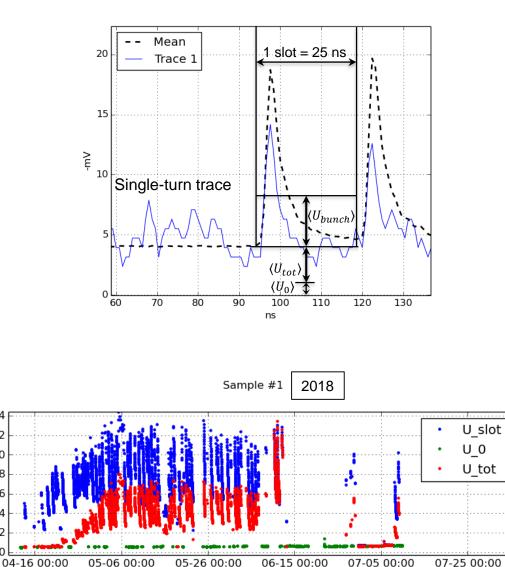


### **Recap: data acquisition**

- Voltage-integral histogram of single bunch pair logged
  - 25 ns window (=1 slot)
  - 2016-2017: No baseline correction
- Slot-integral has 3 components
  - $\langle U_0 \rangle$  = Background signal
  - $\langle U_{tot} \rangle$  = Baseline shift during collisions.
  - $\langle U_{bunch} \rangle$  = Mean signal from single bunch pair collision
  - $\langle U_{slot} \rangle = \langle U_0 \rangle + \langle U_{tot} \rangle + \langle U_{hunch} \rangle$
- Significant baseline shift with higher PMT current
  - $\propto I_{mean}$
  - ~Half(!) the voltage integral comes from baseline (red) at high luminosity

14

12


10

6

-n√

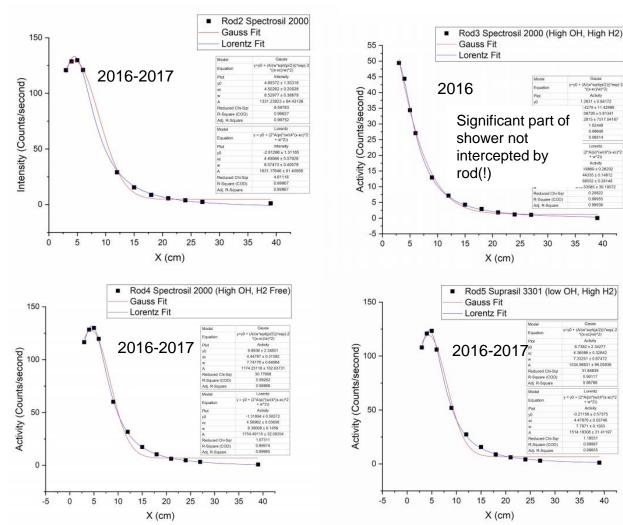
- Not logged 2016-2017
- 2018: detailed logging
- →Restrict long-term evaluation to data points with similar luminosity





# Terminology

### Quartz


- Natural or synthetic
- **Crystalline** SiO2
- Purity: case-by-case
- Fused quartz
  - Amorphous SiO2
  - Made from natural crushed quartz
  - Natural impurities may persist into finished product
- Fused silica
  - Synthetic amorphous SiO2
  - Made from oxidized Si-gas
  - Potentially ultra-pure



# Absorbed dose (Gamma spectroscopy)

- 2016: Negative X-ing angle
- 2017: Positive Xing angle
- Current design: 30 mm gap: TAN-floor to end of quartz rod
- → BRAN "floor" should be made thinner.





Activity vs. vertical rod coordinate (0 = bottom of rod)

