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Overview

 Where: machine luminosity monitors around all IP1, IP2, IP5, IP8

 Use cases: Finding collisions, backup instrument for OP (if no data 
from experiments), cross-check experiments, sanity check, …

 Precision: ~1% @ 1 Hz (absolute luminosity not necessary)

 Challenges:
 Large dynamic range

 IP1 & IP5: radiation (180 MGy/year), limited space in TAN (only 5 cm width)

 HL-LHC upgrade: Cherenkov radiation based monitors

4

TAND2

IP

Triplet

∼140 m

Neutral debris

(forward)

TAN D2

M. Palm, BE-BI-PM
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HL-LHC BRAN prototype
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BRAN 

prototype 

lowered 

into TAN

TAN

Principle

Photomultiplier

(PMT)

Cherenkov

light

Stainless

steel tube

Air gap

Fused silica rod

Charged particle

Mirror

(Al-coating)

Air Fused silica

8 channels

Cherenkov

light

2 Cherenkov radiation-based

modules tested
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General performance

 Good agreement 

between prototype 

voltage-integral and 

ATLAS luminosity

 Signal gain: 

 Gslot =
𝑈𝑠𝑙𝑜𝑡

𝐿𝑡𝑜𝑡/𝑁𝑏

 Fairly stable gain 

from mid-2016 until 

today
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Luminosity and signal 

from 2 fused silica rods 

[2016]

𝐺𝑠𝑙𝑜𝑡

Filter:
• 𝑁𝑏 > 1600

•
𝐿𝑡𝑜𝑡

𝑁𝑏
= [3.4 − 3.6]

2016
2017 2018

First few fb-1: 

significant gain loss

After 16L2: 𝐿𝑡𝑜𝑡 reduced
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PMT saturation

 Gain loss during 

2018

 Prototype: light yield 

on PMT cannot be 

easily tuned →
Change voltage 

instead (1250 V →
750 V)

 PMT recovered!

 Gain returned 

(slowly) to initial 

level

 Gain variation 

during fill stabilized: 

from ~10% to ~1% 

variation
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𝐺𝑏𝑢𝑛𝑐ℎ =
𝑈𝑏𝑢𝑛𝑐ℎ
𝐿𝑏𝑢𝑛𝑐ℎ

2018
Same signal as 

beginning of year

[Note: 750 V signal rescaled]

2016 2017
2018
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Radiation effects - Transmission

 Main radiation 
concern: 
reduced optical 
transmission

 4 rods 
recuperated 
from TAN after 
1-2 years of 
LHC operation
 No visible 

discoloration 
or opacity (by 
eye)

 Shipped to 
ZDC group at 
University of 
Illinois for 
measurements
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Unirradiated
Irradiated

ZDC Quartz rods

[Courtesy: M. Phipps - “ZDC Upgrade: Spectroscopic Results”]

BRAN Fused silica rods (irradiated)

2016-2017

2016-2017

2016-2017

2016
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Measured rod transmission

 Sharp absorption 
centers in UV range 
(214 nm, 325 nm
 Most of the Cherenkov 

light is in this region

 Broad absorption around 
630 nm

 Note:
 Rod #3 (red) only 

exposed during 2016. 
1.5 years of annealing.

 Other rods: 2016-2017, 
0.5 years of annealing

 Conclusion
 Quartz type matters…

 Visible range will still 
provide a signal even if 
UV transmission 
should drop to 0. 
“Signal floor”
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~Unaffected

[Courtesy: M. Phipps - “ZDC Upgrade: Spectroscopic Results”]
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Aluminum mirrors
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Mirror

#10

Mirror 

#11

Mirror 

#12

Initial gain [compared 

to quartz rod]

0.6% 2.8% 8.3%

Gain loss up to 54 fb-1 -32% -43% -83%

Fused silica rod Mirror, #10

Mirror, #11 Mirror, #12

 3 Al-mirrors installed in TAN at different 
heights

 Mirror with largest signal (#12) has also 
degraded the most
 >80% gain loss during 2018

 Currently: -20%/10 fb-1

 No sign of flattening out…

 → Al-mirrors do not seem feasible for HL-
LHC

 ⇒ We will go for quartz rods.

𝐺𝑏𝑢𝑛𝑐ℎ
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Available space

 50 mm available 
between beam 
pipes

 100 mm 
available above 
copper block
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Copper

Iron

100 mm

50 mm

~180 mm

~180 mm

TAXN cross section
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X-ing angle
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Vertical X-ing Horizontal X-ing

[Courtesy: A. Tsinganis & F. Cerutti]

 Vertical X-ing: Shower is centered between beam 
pipes. 

 Change of X-ing angle will have little impact on BRAN 
signal (%-level)

 Horizontal X-ing: Dose peak is outside 50 mm gap
 Change of X-ing angle will change BRAN signal amplitude, 

which is indistinguishable from a change in luminosity

 Not feasible to compensate for this by measuring X-ing
angle

 In addition: dose rate in left/right rods is different => 
transmission will change at different rate => many 
recalibrations would be needed before transmission is 
stabilized

 Above copper block: 100 mm space available
 … but profile is also much wider => less precision

 Dose rate ~3 orders of magnitude lower => Rod 
transmission would continuously degrade during first 
~1000 fb-1, instead of during first ~10 fb-1. 

 Very impractical.

 Conclusion: for horizontal X-ing, the measured 
BRAN luminosity will have a X-ing angle 
dependence
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Dynamic range (1)
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Total luminosity: 12 orders of magnitude

Total light yield: 8 orders of magnitude

Light yield per bunch: ~4-5 orders of magnitude

 Luminosity 

range (p-p 

& Pb-Pb)

 Signal range
 Note: ~20,000 

times more 
signal for Pb-Pb
than p-p for a 
given luminosity

 Light yield per 
bunch crossing 
“only” spans 4-5 
orders of 
magnitude.
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Available signal

Track length/event (charged particles) 

@ Dose peak

98 cm/cm3

Photon yield, quartz 1003 

photons/cm3

Equivalent PMT counts (incl. QE) 145 

counts/cm3

PMT counts/event 14210

Nominal pile-up, HL-LHC 138

PMT counts/crossing

(1 cm3 fused silica at dose peak)

=> 2,000,000
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 Light from particles 
going exactly forward 
won’t reach PMT (total 
internal reflection at 
top)
 Light extraction 

efficiency is pretty low

 Angular divergence of 
charged secondaries
≠0

 Each collision at 
𝜇=138 generates light 
equivalent to 2 million 
PMT “counts”

 →We can have as 
much signal as we 
need
 Light yield on PMT can 

be tuned by adjusting 
Rod-PMT gap

PMT

Fused 

silica 

rod

Air

Al-

tube
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Design considerations: summary

 Fused silica rods/Aluminum mirrors?

 X-ing angle dependence (horizontal)
 We have to live with it.

 Make sure operators know about it.

 Physical space constraints
 Difficult to fit more than two parallel quartz 

rods + PMT + “cross-talk shielding” in 50 
mm

 Dynamic range
 4-5 orders of magnitude in terms of 

photons/collision should be covered

 3.5 orders of magnitude more from 
number of bunches

 Available light
 If we extract a sufficient fraction of light 

from the quartz rod to the PMT, we can 
cover a very large dynamic range

 Transmission loss
 Almost all observed transmission loss of 

fused silica occurs within first ~10 fb-1, but 
then remains stable.

 Foresee (manual) adjustment of light yield 
e.g. at first technical stop after installation.

 Design constraint: this should be quick 
and simple!

 Also: If we can’t handle X-ing angles very 
well, then we should at least make sure that 
the BRAN has an “impressive” dynamic 
range.
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 Warning: the TAN/TAXN is 

a beast against which 

many detectors have 

failed…

 “Simple but reliable” 

better than “Perfect but 

complex”

Fused

silica

IP1/5
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Channel configuration

 Tight fit between 
beam pipes: reduce 
quartz rod diameter 
from 10 to 5 mm

 6 Low-sensitivity 
channels
 = Multiple backup 

channels

 Working point:  
Physics , high 
bunch luminosity

 2 High-sensitivity 
channels
 Working point: 

finding collision, 
low-𝜇 runs
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Coincidence counting 

between equal-dose rods 

(left/right) possible

High sensitivity

Low sensitivity

[Top view]

Shower

direction
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Channel sensitivity range
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Low sensitivity

High sensitivity

~1 p-e/coll

11 kcps
~0.01 p-e/coll

110 cps

Counting mode

Integral mode

~1 p-e/coll

11 kcps

~0.01 p-e/coll

100 cps

Counting mode

Integral mode

p-e = photoelectron

cps = counts per second
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Low sensitivity channel
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PMT

Light-absorption 

at bottom

Soft studs, keeping rod in place

Flat top: only “fast” rays (large 𝜃) will exit → Better 

bunch-to-bunch resolution 

Movable: re-adjust light yield 

after first ~10 fb-1

Clamp/locking ring: blocks 

light + quick adjustment

Reduce thickness of tube “floor” 

(shower partially missed in 2016, when 

X-ing angle was negative)

 Current 
prototype serves 
as baseline for 
precise light yield 
estimates and 
dimensions
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High sensitivity channels

 PMT will be killed 
if not shielded at 
high luminosity
 Add pull-

solenoid shutter

 Light yield 
tuning:
 PMT-Rod 

distance

 Graduated iris 
diaphragm

8th HL-LHC Collaboration Meeting 22

PMT

Reflective bottom

Soft studs, keeping rod in place

Movable

Clamp/locking ring: blocks light, 

quick adjustment

Iris diaphragm

Pull-solenoid

Shutter (open/closed)

Diffuse top→
Improved light extraction
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Summary

 Fused silica is a feasible 
Cherenkov medium for 
the TAXN environment

 Aluminum mirrors still 
degrading

 X-ing angle dependence 
at IP1
 Make sure OP is aware

 Cosmetics: apply X-ing
angle dependent scaling 
factor 

 HL-LHC BRAN will 
measure luminosity over 
12 orders of magnitude
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 Thank you for your attention
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Backups
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PMT saturation (1)

 Bunch gain


 Gain:  

 ~10% intra-fill 
drop

 Decreasing inter-
fill trend during 
2018

 Cause?
 Luminosity is 

higher now, 
compared to 
2016 → More 
light → Larger 
current
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Filter:
• 𝛽∗ = 30 𝑐𝑚
• X-ing=130 𝜇rad

• 𝑁𝑏 >100 

bunches

𝐺𝑏𝑢𝑛𝑐ℎ

2018

2016 2017
2018

𝑈𝑠𝑙𝑜𝑡 = 𝑈0 + 𝑈𝑡𝑜𝑡 + 〈𝑼𝒃𝒖𝒏𝒄𝒉〉

Ideally ∝ 𝐿𝑏𝑢𝑛𝑐ℎ

𝐺𝑏𝑢𝑛𝑐ℎ =
𝑈𝑏𝑢𝑛𝑐ℎ
𝐿𝑏𝑢𝑛𝑐ℎ
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 Voltage-integral histogram of 
single bunch pair logged
 25 ns window (=1 slot)

 2016-2017: No baseline 
correction

 Slot-integral has 3 
components
 〈𝑈0〉 = Background signal

 〈𝑈𝑡𝑜𝑡〉 = Baseline shift during 
collisions.

 𝑈𝑏𝑢𝑛𝑐ℎ = Mean signal from 
single bunch pair collision



 Significant baseline shift with 
higher PMT current

 ∝ 𝐼𝑚𝑒𝑎𝑛

 ~Half(!) the voltage integral 
comes from baseline (red) at 
high luminosity

 Not logged 2016-2017

 2018: detailed logging

 →Restrict long-term 
evaluation to data points 
with similar luminosity

Recap: data acquisition
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1 slot = 25 ns

〈𝑈𝑏𝑢𝑛𝑐ℎ〉

〈𝑈𝑡𝑜𝑡〉

𝑈𝑠𝑙𝑜𝑡 = 𝑈0 + 𝑈𝑡𝑜𝑡 + 〈𝑈𝑏𝑢𝑛𝑐ℎ〉
〈𝑈0〉

2018

Single-turn trace
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Terminology

 Quartz
 Natural or synthetic

 Crystalline SiO2

 Purity: case-by-case

 Fused quartz
 Amorphous SiO2

 Made from natural crushed quartz

 Natural impurities may persist into 
finished product

 Fused silica
 Synthetic amorphous SiO2

 Made from oxidized Si-gas

 Potentially ultra-pure
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Absorbed dose (Gamma spectroscopy)

2016-2017

2016

2016-2017

2016-2017

Significant part of 

shower not 

intercepted by 

rod(!)

Activity vs. vertical rod coordinate (0 = bottom of rod)

 2016: Negative 

X-ing angle

 2017: Positive X-

ing angle

 Current design: 

30 mm gap: 

TAN-floor to end 

of quartz rod 

 → BRAN “floor” 

should be made 

thinner.


