

Beam dynamics simulations in electron lens test stand

S. Sadovich

8th HL-LHC Collaboration Meeting CERN, October 17, 2018

Beam dynamics in electron lense (short overview)

$$\frac{d\mathbf{r}_{\text{guiding centre}}}{dt} = v_{\parallel} \frac{\mathbf{B}}{|B|} + \frac{\mathbf{E}_{\perp} \times \mathbf{B}}{B^2} + v_{\perp} \frac{\mathbf{B} \times \nabla \mathbf{B}}{B^2} - \frac{v_{\parallel}^2}{\omega_c} \frac{\mathbf{R}_c \times \mathbf{B}}{R^2 |B|}$$

- In the presence of drift tube possible formation of virtual cathode
- Intensity modulation possible change of longitudinal profile

Existing electron lenses and HEL@HL-LHC

Tevatron, FERMILAB

Parameter	Symbol	Value	Unit	
Tevati	on Electron	i Lens		
Electron energy	U_{*}	5/10	kV	
(oper./max)	02,	2110		
Peak electron current	I	0.6/3	Δ	
(oper/max)	Je.	0.0/5	А	
Magnetic field in	Bmain	30	kG	
main/gun solenoid	Bgun	3		
Radii: cathode/e-beam	a_c	7.5	mm	
in main solenoid	ae	2.3		
e-pulse period/width,	To	21	μs	
"0-to-0"	Т	~0.6		
Interaction length	Le	2.0	m	
Tevatron	Collider Pa	rameters		
Circumference	C	6.28	km	
Proton/antiproton	F	020	Call	
beam energy	L	980	Gev	
Proton bunch intensity	N_p	250	10 ⁹	
Antiproton bunch	N	50 100	10 ⁹	
intensity	INa	50-100		
Emittance proton,	Ep	≈2.8		
antiprot. (norm., rms)	Ea	≈1.4	μm	
Number of bunches,	N_B	36	ns	
bunch spacing	T_{h}	396		
Initial luminosity	La	1.5-2.9	10 ³² cm ⁻² s ⁻¹	
Beta functions, TEL2	By/By	150/68	m	
Beta functions, TEL1	B. /B.	29/104	m	
Proton/antiproton	EP	≈0.008	max., per	
head-on tuneshift	Ea	≈0.011	IP	
Proton/antiproton	100	≈0.003	max.	
long_range tuneshift	100	≈0.006		

V. Kamerdzhiev, Progress with Tevatron electron lenses, Proceedings of COOL 2007, Bad Kreuznach, Germany

RHIC, BNL

TABLE I. The parameters for the RHIC electron lenses.

Parameter	Unit	Value	Value
Proton beam parameters		Design	2015 operated
Total proton energy E_p	GeV	250	100
Relativistic factor γ_p		266.4	106.8
Bunch intensity N_p	1011	3.0	2.25
$\beta^*_{x,y}$ at IP6, IP8 (p-p)	m	0.5	0.85
$\beta^*_{x,y}$ at IP10 (p-e)	m	10.0	15.0
Lattice tunes (Q_x, Q_y)		(0.695,	(0.695,
		0.685)	0.685)
Phase advance (IP8-IP10)	Degree	180	180
rms emittance ε_n , initial	mm mrad	2.5	2.8
rms beam size at IP6, IP8, σ^*_{p}	μm	70	150
rms beam size at IP10, σ_{p}^{*}	μm	310	630
rms bunch length σ_s	m	0.50	0.70
Beam-beam parameter ξ /IP		0.0147	0.0097
Number of beam-beam IPs		2 + 1	2 + 1
Electron lens parameters			
Distance of center from IP	m	1.5	1.5
Effective length L_e	m	2.1	2.1
Kinetic energy E_e	kV	5	5
Relativistic factor β_{e}		0.14	0.14
Relativistic factor γ_e		1.0002	1.0002
Current L	А	1.0	0.43/0.60
Electron beam size at	μm	350	650
interaction			
Linear tune shift		0.0147	0.01

X. Gu, Electron lenses for head-on beam-beam compensation in RHIC, Physical review accelerators and beams 20, 023501 (2017)

HEL @ HL-LHC

Effective length	2.9 m
Current	5A at 15kV
Beam shape	Hollow beam

HEL@HL-LHC has higher current, higher energy, higher current density longer effective length comparing to implemented electron lenses

Test of HEL components (gun, diagnostics, modulator, etc.) is required

Outline

- Simulation of the FNAL test stand in CST® Particle Studio
- Technique to compare beam profiles from experiments and simulations
- Electron lens test stand at CERN

Profile evolution (results from FNAL test stand)

Profile evolution - simulation

Profiles of the beam with tilted gun

*In simulations gun is tilted by 2° and then aligned by steerers.

$$\varphi \approx const \times \frac{\sqrt{V}}{B}L$$

Scaling of profiles vs Length (simulation)

*In simulations gun is tilted by 2° and then aligned by steerers.

$$\frac{\sqrt{V}}{B}L \qquad \frac{\sqrt{2}[kV]}{0.4[T]} 2000 \ [mm] \qquad \approx \qquad \frac{\sqrt{4}[kV]}{0.4[T]} 1414 \ [mm] \qquad \approx \qquad \frac{\sqrt{6}[kV]}{0.4[T]} 1155 \ [mm]$$

 $\varphi \approx$

Image comparison – Polar Fourier Transform

$$f(r,\varphi) = \int_0^\infty \sum_{m=-\infty}^\infty P_{k,m} \Psi_{k,m}(r,\varphi) k \, dk$$

 $\Psi_{k,m}$ - basis function $P_{k,m}$ - polar Fourier coefficients

Image comparison – test pulse

CERI

E-lens test stand at CERN

12

Electron lens test stand at CERN: stage 1

Purpose of first stage:

- Preparation:
 - Commissioning hardware (magnets, vacuum, HV system, control, etc.)
 - Safety and technical aspects of operation
 - Commissioning diagnostic procedures (current, profile, position)
- Measurements:
 - Electron gun tests: characterization (profile measurements)

13

• Electron gun: anode modular

Covered by HL-LHC

Magnetic field along Z axis for different currents in the solenoids

E_Path_B-Field (Ms)

A. Rossi, S. Sadovich, 1st ARIES Annual Meeting, 22-25 May 2018, RIGA Technical University

Conclusions

- Beam dynamics simulation in CST® PS and experiments in FNAL gives similar qualitative behavior, the differences can be caused by:
 - misalignments of the gun
 - uninform current yield
 - wrong computational model
- Comparison of profiles based on Fourier decomposition in polar coordinates was introduced for data analysis.
- E-lens test bench at CERN will give additional data required for validation of the simulations.

Test stand: stage 2.

Purpose and measurements of stage 2:

- Allow drift and see beam deformations/rotations/... computer model validation
- Study electron beam dynamics in regime close to virtual cathode
- Study electron beam dynamics with compression
- Test Beam Position Monitor 'shoe-box' or 'strip-line' with very HF modulation
- Test effect of very HF modulation (<10% current) on beam dynamics (microbunching?) for HEL

FNAL test stand – model in CST® Particle Studio

