PHASE ALIGNMENT IN FERRITE AND FINEMET CAVITIES

PROJECT DESCRIPTION

Goal:

To develop an algorithm for the beam-based relative phase alignment of RF cavities in the PSB.

MATHEMATICAL AND NUMERICAL ANALYSIS

SYNCHRONOUS PHASE

$$
\sin \left(\varphi_{s 0}\right)=\sin \left(\varphi_{s}\right)+\alpha \sin \left(n \varphi_{s}+\Phi_{2}\right)
$$

$\frac{V_{1}}{V_{2}}=\alpha$, the voltage ratio between the cavities.
$\varphi_{s 0}$, synchronous phase of the system with the second cavity switched off.
n, harmonic number. Frequency ratio between cavities.
Φ_{2}, phase difference between the cavities.
φ_{s}, resultant synchronous phase of the system.
Analyse $\varphi_{S}\left(\Phi_{2}\right)$

$\varphi_{s}\left(\Phi_{2}\right)$ CASE OF $\mathrm{n} \in\{1,2\}$

Implicit equation $\xrightarrow{\text { change of variables }}$ polynomial equation
For $n=1$ the equation is of order 2
For $n=2$ the equation is of order 4 solvable

For $n>2$ the equation is of order $>4\}$ "unsolvable"

$$
0=\alpha z^{2 n} e^{i \Phi_{2}}-i z^{n+1}-2 z^{n} \sin \left(\phi_{s 0}\right)+i z^{n-1}+\alpha e^{-i \Phi_{2}}
$$

$$
\phi_{s}=\arg \left(z_{i}\right)
$$

$\varphi_{s}\left(\Phi_{2}\right)$ GENERAL CASE

$$
n=2, \quad \varphi_{s 0}=0.2
$$

$\alpha<0.3$

$\varphi_{s}\left(\Phi_{2}\right)$ AND $\lambda\left(\Phi_{2}\right)$ FOURIER SERIES

$$
\varphi_{s}\left(\Phi_{2}\right)=\sum_{m=-\infty}^{\infty} a_{m} e^{i m \Phi_{2}}
$$

Guess $\lambda\left(\Phi_{2}\right)$ such that the plot $\left(\varphi_{s}\left(\Phi_{2}\right), \lambda\left(\Phi_{2}\right)\right)$ forms a closed path? Possible answer: Hilbert transform of φ_{s}.

$$
\begin{gathered}
\widehat{\varphi_{s}}\left(\Phi_{2}\right)=-i \sum_{m=-\infty}^{\infty} \operatorname{sgn}(m) a_{m} e^{i m \Phi_{2}} \\
\lambda\left(\Phi_{2}\right) \sim \widehat{\varphi_{s}}\left(\Phi_{2}-\varphi_{s 0}\right)
\end{gathered}
$$

$$
\varphi_{s}[\mathrm{rad}] \quad n=1, \varphi_{s} \approx 0, \alpha \in\left\{\frac{1}{8}, \frac{2}{8}, \frac{3}{8}, \frac{4}{8}\right\}
$$

Φ_{2}

EXPERIMENTAL WORK AND ALGORITHM DEVELOPMENT

ALGORITHMS FOR MEASURING φ_{s} AND λ

$$
\begin{gathered}
f(t)=\operatorname{Re}\{f(t)+i \hat{f}(t)\}=\operatorname{Re}\left\{r(t) e^{i \theta(t)}\right\}=r(t) \cos (\theta(t)) \\
\theta(t)=\arctan \left(\frac{\hat{f}(t)}{f(t)}\right) \text { is called the instantaneous phase of } f(t) \\
r(t)=\sqrt{f(t)^{2}+\hat{f}(t)^{2}} \text { is called the analytic envelope of } f(t) \\
\theta(t)= \pm \frac{\pi}{2} \text { implies } f(t)=0 \\
\theta(t)=0 \text { implies } f(t)=r(t)
\end{gathered}
$$

For symmetric signals the maxima of $r(t)$ and $f(t)$ coincide.

ALGORITHMS FOR MEASURING φ_{s} AND λ

General result:

Finding $f(t)=0$ is the same as maximising $\theta(t)$

For symmetric signals:
Maximising $f(t)$ is the same as solving $\theta(t)=0$

time [a. u.]

time [a. u.]
signal intensity [a. u.]
θ [rad]

time [a. u.]

SOFTWARE DEVELOPMENT

New Blueprint Loaded		
-		Start
Input	Output	Shared
Name	Va	
\$ScopeID		
\$NToAcquire		
\$ Acquire		
\$V1beg		
\$V1end		
\$V1num		
\$V2beg		

User PSB.USER.LHC1A No LINAC Failure and Beam Requested Ring
Safe to Work
Ring

Ready	Stop

\checkmark Finemet

Tomoscope Input: DPE32.CHO2/Acquisition\#value Set
Tomoscope Traces 80 -

Scan Type


```
Z List of Properties:
-Bunch Length
```

RESULTS

1. MEASURE DATA

$$
\begin{aligned}
n & =1 \\
V_{1} & =8 \mathrm{kV} \\
V_{2} & =5 \mathrm{kV} \\
\text { C time } & =720 \mu \mathrm{~s} \\
\varphi_{s 0} & =?
\end{aligned}
$$

- Inputs: C time, V_{1}, V_{2}, range of Φ_{2}.
- Choose an algorithm for
calculating φ_{s} and λ.
- Plot the data.

2. INTERPOLATE AND SHIFT THE DATA

$$
\begin{aligned}
n & =1 \\
V_{1} & =8 \mathrm{kV} \\
V_{2} & =5 \mathrm{kV} \\
\text { C time } & =720 \mu \mathrm{~s} \\
\varphi_{s 0} & =0.05
\end{aligned}
$$

- Only for $\mathrm{n}=1$: calculate the phase misalignment ψ such that the steepest gradient point of Φ_{2} is at $(0,0)$
- Calculate $\varphi_{s 0}$ by
$\varphi_{s 0}=\arcsin \left(\sin \left(\operatorname{argmax}\left(\varphi_{\mathrm{s}}\right)\right)-\alpha\right)$

3. FIT THE FOURIER SERIES

$$
\begin{aligned}
n & =1 \\
V_{1} & =8 \mathrm{kV} \\
V_{2} & =5 \mathrm{kV} \\
\mathrm{C} \text { time } & =720 \mu \mathrm{~s} \\
\varphi_{s 0} & =0.05
\end{aligned}
$$

- Calculate the Fourier series using the input α.
- Scale using the input C time.

PROBLEMS

$$
\begin{aligned}
n & =2 \\
V_{1} & =7 \mathrm{kV} \\
V_{2} & =2 \mathrm{kV} \\
\mathrm{Ctime} & =675 \mu \mathrm{~s} \\
\varphi_{s 0} & =0.50 \text { ??? }
\end{aligned}
$$

OUTLOOK

- Change the measurement technique for the synchronous phase.
- Create map between $\left(\alpha, \varphi_{s 0}, \Phi_{2}\right) \rightarrow\left(\varphi_{s}, \lambda\right)$
- Take better measurements to evaluate the azimuth and delay compensation for the low level RF.

