PHASE ALIGNMENT IN FERRITE AND FINEMET CAVITIES

Michał Kuczyński under the supervision of Dr Simon Albright

PROJECT DESCRIPTION

Goal:

To develop an algorithm for the beam-based relative phase alignment of RF cavities in the PSB.

MATHEMATICAL AND NUMERICAL ANALYSIS

SYNCHRONOUS PHASE

$$\sin(\varphi_{s0}) = \sin(\varphi_s) + \alpha \sin(n\varphi_s + \Phi_2)$$

 $\frac{V_1}{V_2} = \alpha$, the voltage ratio between the cavities.

 φ_{s0} , synchronous phase of the system with the second cavity switched off.

n, harmonic number. Frequency ratio between cavities.

 Φ_2 , phase difference between the cavities.

 $\varphi_{\scriptscriptstyle S}$, resultant synchronous phase of the system.

Analyse $\varphi_{\scriptscriptstyle S}(\Phi_2)$

$\varphi_s(\Phi_2)$ CASE OF $n \in \{1,2\}$

Implicit equation $\xrightarrow{\text{change of variables}}$ polynomial equation For n=1 the equation is of order 2 solvable

For n=2 the equation is of order 4

For n > 2 the equation is of order > 4 "unsolvable"

$$0 = \alpha z^{2n} e^{i\Phi_2} - iz^{n+1} - 2z^n \sin(\phi_{s0}) + iz^{n-1} + \alpha e^{-i\Phi_2}$$

$$\phi_s = \arg(z_i)$$

$\varphi_s(\Phi_2)$ GENERAL CASE

$$\alpha = 0.3$$

$$\frac{\varphi_{s}}{\frac{1}{1-\alpha}} = 0.3$$

$$\alpha < \sqrt{\frac{\sin(\varphi_{s0})^{2}}{1-n^{2}} - \frac{1}{n^{2}}}$$

$$n = 2$$
, $\varphi_{s0} = 0.2$

$$\alpha = 0.7$$

$$\alpha = 0.9$$

$$\sqrt{\frac{\sin(\varphi_{s0})^2}{1 - n^2}} - \frac{1}{n^2} \le \alpha \le 1 - |\sin(\varphi_{s0})| \qquad 1 - |\sin(\varphi_{s0})| < \alpha$$

$\varphi_s(\Phi_2)$ AND $\lambda(\Phi_2)$ FOURIER SERIES

$$\varphi_{S}(\Phi_{2}) = \sum_{m=-\infty}^{\infty} a_{m} e^{im\Phi_{2}}$$

Guess $\lambda(\Phi_2)$ such that the plot $(\varphi_s(\Phi_2),\lambda(\Phi_2))$ forms a closed path?

Possible answer: Hilbert transform of $\varphi_{\scriptscriptstyle S}$.

$$\widehat{\varphi_S}(\Phi_2) = -i \sum_{m=-\infty}^{\infty} \operatorname{sgn}(m) a_m e^{im\Phi_2}$$

$$\lambda(\Phi_2) \sim \widehat{\varphi_s}(\Phi_2 - \varphi_{s0})$$

EXPERIMENTAL WORK AND ALGORITHM DEVELOPMENT

ALGORITHMS FOR MEASURING $\varphi_{\mathcal{S}}$ and λ

$$f(t) = Re\{f(t) + i\hat{f}(t)\} = Re\{r(t)e^{i\theta(t)}\} = r(t)\cos(\theta(t))$$

$$\theta(t) = \arctan\left(\frac{\hat{f}(t)}{f(t)}\right) \text{ is called the instantaneous phase of } f(t)$$

$$r(t) = \sqrt{f(t)^2 + \hat{f}(t)^2} \text{ is called the analytic envelope of } f(t)$$

$$\theta(t) = \pm \frac{\pi}{2} \text{ implies } f(t) = 0$$

$$\theta(t) = 0 \text{ implies } f(t) = r(t)$$

For symmetric signals the maxima of r(t) and f(t) coincide.

ALGORITHMS FOR MEASURING $\varphi_{\scriptscriptstyle S}$ and λ

General result:

Finding f(t) = 0 is the same as maximising $\theta(t)$

For symmetric signals:

Maximising f(t) is the same as solving $\theta(t) = 0$

time [a.u.]

time [a.u.]

time [a. u.]

SOFTWARE DEVELOPMENT

Trace Number

Trace Number

RESULTS

1. MEASURE DATA

- Inputs: C time, V_1 , V_2 , range of Φ_2 .
- Choose an algorithm for calculating $\varphi_{\scriptscriptstyle S}$ and λ .
- Plot the data.

2. INTERPOLATE AND SHIFT THE DATA

$$n = 1$$

$$V_1 = 8kV$$

$$V_2 = 5kV$$
C time = 720 μ s
$$\varphi_{s0} = 0.05$$

• Only for n=1: calculate the phase misalignment ψ such that the steepest gradient point of Φ_2 is at (0,0)

• Calculate φ_{s0} by $\varphi_{s0} = \arcsin(\sin(\arg\max(\varphi_s)) - \alpha)$

3. FIT THE FOURIER SERIES

$$n = 1$$

$$V_1 = 8kV$$

$$V_2 = 5kV$$

$$C \text{ time} = 720\mu\text{s}$$

$$\varphi_{s0} = 0.05$$

- Calculate the Fourier series using the input α .
- Scale using the input C time.

PROBLEMS

n = 2 $V_1 = 7kV$ $V_2 = 2kV$ $C \text{ time} = 675\mu\text{s}$ $\varphi_{s0} = 0.50 \text{ ???}$

OUTLOOK

- Change the measurement technique for the synchronous phase.
- Create map between $(\alpha, \varphi_{s0}, \Phi_2) \rightarrow (\varphi_s, \lambda)$
- Take better measurements to evaluate the azimuth and delay compensation for the low level RF.