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Monte Carlo Simulation

Understand how detector design affects measurements and 

physics

Correct for inefficiencies, inaccuracies, unknowns

Compare theory models to data
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Higgs boson

CMS 
experiment

Flat Budget

Complex physics and geometry modeling

>50% of Worldwide LHC Computing 
Grid (WLCG) power today

Increase by 100x by 2025!

Essential for data analysis & detector design
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Deep Learning for fast simulation

Replace Monte Carlo with a DNN that generates directly detectors output

Accurate simulation results

Fast inference step

Generic customizable tool 

Easily extensible framework to different detector use cases

Complex architecture optimization

Training time under control

Scalability

Possibility to work across platforms
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Generator G generates data from random noise

Discriminator D learns how to distinguish real data from generated data
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Simultaneously train two networks that compete with each other 

Generative adversarial networks

Goodfellow et al. : arXiv:1406.2661v1 

Image source:

Karras et al. ICLR2018

https://arxiv.org/abs/1406.2661v1
https://arxiv.org/abs/1406.2661v1
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f


6

Compact LInear Collider

CLIC is a CERN project for a linear 

accelerator of electrons and positrons to 

TeV energies

http://cds.cern.ch/record/2254048#

http://cds.cern.ch/record/2254048
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Detector output as 3D image
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25

http://cds.cern.ch/record/2254048#

Electromagnetic calorimeter design

Sparse images

Highly segmented (pixelized)

Large dynamic range

Segmentation is critical for particle identification and energy determination.

CLIC is a CERN project for a linear accelerator of electrons and 
positrons to TeV energies

http://cds.cern.ch/record/2254048
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Generator
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Our model: 3D convolutional GAN

Discriminator

~1M parameters

Total model Size: 3.8MB
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Physics simulation with GANs

Comparison to Monte Carlo
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Geant4
GAN generated

GAN generated electron 
shower

Y moment (width)

Average shower 
section

Primary particle 
energy
(100 GeV)

Single cell 
response
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Generation speedup

Inference:

Classical Monte Carlo simulation requires 17 s/shower

3DGAN takes  7 ms/shower 

speedup factor > 2500!!

Time to create an electron shower

Method Machine
Time/Shower

(msec)

Classical Monte
Carlo 

2S Intel® Xeon® 
Platinum 8180

17000

3D GAN
(batch size 128)

2S Intel® Xeon® 
Platinum 8180
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Parallelizing Training

Keras

Simplicity and high productivity

TensorFlow + MKL-DNN w/ 3D Conv Support

Distribute training via Horovod

Ensure data is loaded in parallel

Run on Stampede2 cluster

Dual socket Intel® Xeon® 8160

2x 24 cores per node, 192 GB RAM

Intel® Omni-Path Architecture
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IXPUG ISC 2018 Workshop Proceedings
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Baseline GANs:
1Wk/Node, TF+EIGEN

Baseline GANs:
1Wk/Node, TF+MKL-

DNN

GANs+Modified Filters:
1Wk/Node, TF+MKL-

DNN

GANs+Modified Filters:
4Wk/Node, TF+MKL-

DNN
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High Energy Physics: 3D GANS Training Secs/Epoch Performance
Single-Node Intel(R) 2S Xeon(R) Stampede2/TACC

TensorFlow 1.9, MKL-DNN vs EIGEN

Perf. Improvement (Secs/Batch)

Baseline:
140625 

Secs/Epoch

Baseline:
17831 

Secs/Epoch

Single-Node optimisation

Our baseline: 

1 worker/node TF + Eigen

Replace Eigen with MKL-DNN

+ Optimize number of convolution 
filters

+ Parallelize to 4 workers/node

Training performance
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Intel 2S Xeon(R) Nodes

High Energy Physics: 3D GANS Training Time Performance
Intel 2S Xeon(R) on Stampede2/TACC, OPA Fabric

TensorFlow 1.9+horovod, IMPI, Core Aff. BKMs, 4 Workers/Node

2S Xeon 8160: Secs/Epoch

Multi-Node Scaling Performance
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Intel(R) 2S Xeon(R) Nodes

High Energy Physics: 3D GANs Training Speedup Performance
Intel 2S Xeon(R) on Stampede2/TACC, OPA Fabric

TensorFlow 1.9+MKL-DNN+horovod, Intel MPI, Core Aff. BKMs, 4 Workers/Node

2S Xeon 8160: Secs/Epoch Speedup Ideal Scaling Efficiency

128-Node Perf:
148 Secs/Epoch

94% scaling

efficiency up to 

128 nodes

Training Time/Epoch
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Some performance degradation 

Mostly at low energy

Network optimised for the 100-

200 GeV central region

Applied warmup and scaling of 

initial learning rate

Further investigation ongoing

Physics performance

Monte Carlo

BatchSize=1024

BatchSize=4096

BatchSize=10240

Fraction of 

particle energy 

deposited in 

the calorimeter
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Summary

Distributed training and HPC optimization is critical

Enables architecture optimization and generalization

Increase the size of the problems we can solve

Our initial results are very promising

Reduced training time by 8x on single node

Linear scaling brings down training time to ~2min/epoch on 128 nodes

Extensive NN training will be a new workflow for large 

HEP experiments

15
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2019 Plan

Study generalisation to different detector use cases
Test available frameworks to perform hyper-parameter optimisation

Integration to distributed training approach to reduce training time. (mpi_learn/mpi_opt)

Test integration with Big Data frameworks
BigDL and Spark

Test dedicated hardware when available
Future Nervana platforms for training and inference

Optimise inference on integrated FPGA systems  
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Thank you

openlab.cern

Questions?
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Stampede2/TACC Configuration 

Details

Compute Nodes: 2 sockets Intel® Xeon® Platinum 8160 CPU with 24 cores each @ 2.10GHz for a total of 48 cores per 

node, 2 Threads per core, L1d 32K; L1i cache 32K; L2 cache 1024K; L3 cache 33792K, 96 GB of DDR4, Intel® Omni-Path 

Host Fabric Interface, dual-rail. Software: Intel® MPI Library 2017 Update 4Intel® MPI Library 2019 Technical Preview OFI 

1.5.0PSM2 w/ Multi-EP, 10 Gbit Ethernet, 200 GB local SSD, Red Hat* Enterprise Linux 6.7.

TensorFlow 1.6: Built & Installed from source: https://www.tensorflow.org/install/install_sources

Model: CERN 3D GANS from https://github.com/sara-nl/3Dgan/tree/tf

Dataset: CERN 3D GANS from https://github.com/sara-nl/3Dgan/tree/tf

Performance measured on 256 Nodes with:

OMP_NUM_THREADS=24 HOROVOD_FUSION_THRESHOLD=134217728 export I_MPI_FABRICS=tmi, export 

I_MPI_TMI_PROVIDER=psm2 \

mpirun -np 512 -ppn 2 python resnet_main.py --train_batch_size 8 \

--num_intra_threads 24 --num_inter_threads 2 --mkl=True \

--data_dir=/path/to/gans_script.py --kmp_blocktime 1

https://portal.tacc.utexas.edu/user-guides/stampede2
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https://www.tensorflow.org/install/install_sources
https://github.com/sara-nl/3Dgan/tree/tf
https://github.com/sara-nl/3Dgan/tree/tf
https://portal.tacc.utexas.edu/user-guides/stampede2
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Batch Size: 8/Worker, # Workers/Node=4/Node (Mapped to NUMA domains)

TF tuning: inter_op: 2 & Intra_op: 11 (Xeon® 8160 is 24C/CPU); AVX512 –FMA support

Learning Rate: 0.001, Optimizer: RMSprop

Warmup Epochs: 5 (Facebook Methodology), Training Epochs: 25

Optimise filter sizes

Conv Filters: Multiple of 16 (MKL-DNN optimizations)

Dataset: 200000 electrons

Training Samples: 180000 & Validation: 20000 
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Architecture, Dataset & Runtime 

Options


