

Fast Simulation with Generative Adversarial Networks

F. Carminati

S. Vallecorsa, G. Khattak

Openlab Technical Workshop– January 23rd 2019

Outline

Introduction **Generative Models Generative Adversarial Networks** Our model **Physics Performance** Single-node Performance Multi-node Performance Extending the application domain Summary

Monte Carlo Simulation

Essential for data analysis & detector design

Understand how detector design affects measurements and physics

Correct for inefficiencies, inaccuracies, unknowns

Compare theory models to data

Complex physics and geometry modeling >50% of Worldwide LHC Computing Grid (WLCG) power today

Increase by 100x by 2025!

CERN

🖬 🧬 openlab

Deep Learning for fast simulation

Replace Monte Carlo with a DNN that generates directly detectors output

- Accurate simulation results
- Fast inference step
- Generic customizable tool
 - Easily extensible framework to different detector use cases
- Complex architecture optimization
 - Training time under control
 - Scalability
 - Possibility to work across platforms

Generative adversarial networks

Simultaneously train two networks that compete with each other

Generator G generates data from random noise Discriminator D learns how to distinguish real data from generated data

Karras et al. ICLR2018

Compact Linear Collider

CLIC is a CERN project for a linear accelerator of electrons and positrons to TeV energies

Detector output as 3D image

CLIC is a CERN project for a linear accelerator of electrons and positrons to TeV energies

- Electromagnetic calorimeter design
 - Sparse images
 - Highly segmented (pixelized)
 - Large dynamic range

Segmentation is critical for particle identification and energy determination.

ower (e, v)

Our model: 3D convolutional GAN

Discriminator

~1M parameters Total model Size: 3.8MB

Physics simulation with GANs

Comparison to Monte Carlo

Generation speedup

Inference:

Classical Monte Carlo simulation requires 17 s/shower 3DGAN takes 7 ms/shower

→ speedup factor > 2500!!

Time to create an electron shower		
Method	Machine	Time/Shower (msec)
Classical Monte Carlo	2S Intel [®] Xeon [®] Platinum 8180	17000
3D GAN (batch size 128)	2S Intel [®] Xeon [®] Platinum 8180	7

Parallelizing Training

Keras

Simplicity and high productivity TensorFlow + MKL-DNN w/ 3D Conv Support Distribute training via Horovod Ensure data is loaded in parallel Run on Stampede2 cluster Dual socket Intel® Xeon® 8160 2x 24 cores per node, 192 GB RAM Intel® Omni-Path Architecture

Single-Node optimisation

Training performance

Our baseline: 1 worker/node TF + Eigen

Replace Eigen with MKL-DNN

+ Optimize number of convolution filters

+ Parallelize to 4 workers/node

🖥 🚅 openlab

Multi-Node Scaling Performance

Physics performance

Extensive NN training will be a new workflow for large HEP experiments

Distributed training and HPC optimization is critical

Enables architecture optimization and generalization

Increase the size of the problems we can solve

Our initial results are very promising

Reduced training time by 8x on single node

Linear scaling brings down training time to ~2min/epoch on 128 nodes

15

CERN

2019 Plan

Study generalisation to different detector use cases
Test available frameworks to perform hyper-parameter optimisation
Integration to distributed training approach to reduce training time. (mpi_learn/mpi_opt)
Test integration with Big Data frameworks
BigDL and Spark
Test dedicated hardware when available
Future Nervana platforms for training and inference
Optimise inference on integrated FPGA systems

Questions?

openlab.cern

Stampede2/TACC Configuration Details

Compute Nodes: 2 sockets Intel® Xeon® Platinum 8160 CPU with 24 cores each @ 2.10GHz for a total of 48 cores per node, 2 Threads per core, L1d 32K; L1i cache 32K; L2 cache 1024K; L3 cache 33792K, 96 GB of DDR4, Intel® Omni-Path Host Fabric Interface, dual-rail. Software: Intel® MPI Library 2017 Update 4Intel® MPI Library 2019 Technical Preview OFI 1.5.0PSM2 w/ Multi-EP, 10 Gbit Ethernet, 200 GB local SSD, Red Hat* Enterprise Linux 6.7.

TensorFlow 1.6: Built & Installed from source: <u>https://www.tensorflow.org/install/install_sources</u>

Model: CERN 3D GANS from https://github.com/sara-nl/3Dgan/tree/tf

Dataset: CERN 3D GANS from https://github.com/sara-nl/3Dgan/tree/tf

Performance measured on 256 Nodes with:

OMP_NUM_THREADS=24 HOROVOD_FUSION_THRESHOLD=134217728 export I_MPI_FABRICS=tmi, export I_MPI_TMI_PROVIDER=psm2 \ mpirun -np 512 -ppn 2 python resnet_main.py --train_batch_size 8 \ --num_intra_threads 24 --num_inter_threads 2 --mkl=True \ --data_dir=/path/to/gans_script.py --kmp_blocktime 1

https://portal.tacc.utexas.edu/user-guides/stampede2

Architecture, Dataset & Runtime Options

Optimise filter sizes Conv Filters: Multiple of 16 (MKL-DNN optimizations)

Dataset: 200000 electrons

Training Samples: 180000 & Validation: 20000

Batch Size: 8/Worker, # Workers/Node=4/Node (Mapped to NUMA domains)
TF tuning: inter_op: 2 & Intra_op: 11 (Xeon® 8160 is 24C/CPU); AVX512 –FMA support
Learning Rate: 0.001, Optimizer: RMSprop
Warmup Epochs: 5 (Facebook Methodology), Training Epochs: 25