

CERN openlab Technical Workshop

BE-ICS

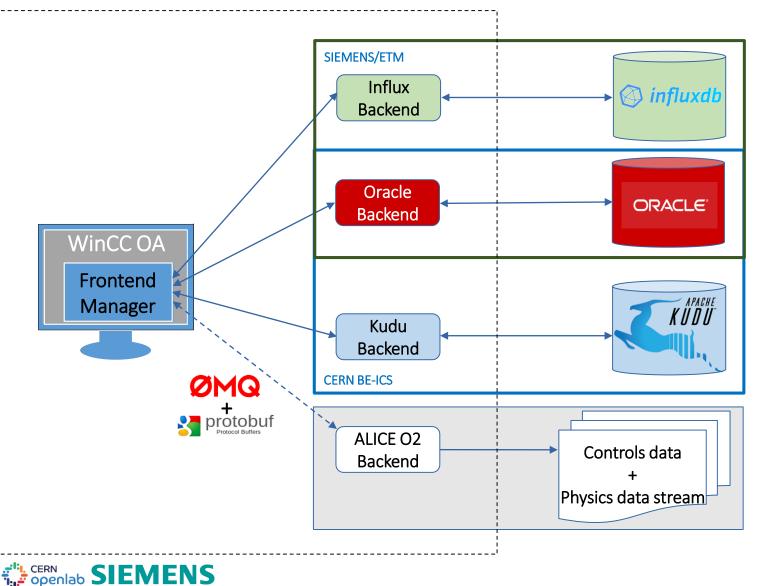
Piotr Golonka, Jakub Guzik, Anthony Hennessey, Rafal Kulaga, Filippo Tilaro, Fernando Varela (BE-ICS)

in collaboration with Siemens/ETM

23/01/2019

Hundreds of WinCC OA SCADA systems at CERN: a major challenge for archiving

Requirements: reliability, performance and scalability, openness, new use cases


Data rates will increase in the HiLumi LHC

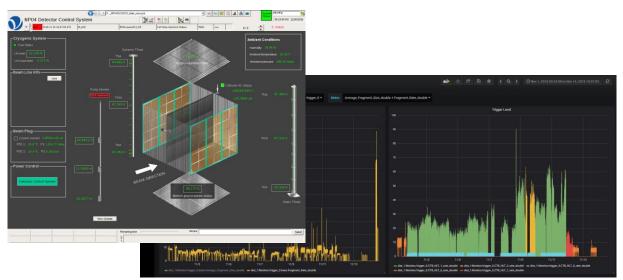
Need for a new, future-proof archiver with support for multiple database technologies

NextGeneration Archiver for WinCC OA

- Frontend Manager (ETM)
 - Connects to a WinCC OA system
 - Exposes ZMQ + protobuf API for backends
- InfluxDB Backend (ETM)
 - Both local and centralized InfluxDB installations supported
- Oracle Backend (CERN/ETM)
 - Compatible with the current archiver
- Apache Kudu Backend (CERN)
 - Potential next database technology for use at CERN (evaluation ongoing)
 - Enables data analytics
- Open architecture custom backends (e.g. ALICE O2)

Project status

- Frontend
 - Most important features already implemented
 - Performance improvements in progress (based on results of large-scale tests)
 - Release for early adopters in Spring
- InfluxDB Backend
 - The most feature-complete backend at the moment
 - Release for early adopters in Spring
- Oracle Backend
 - A bit behind InfluxDB Backend in terms of functionality
 - Takeover of work by the new openlab Fellow
 - Migration and rollback scenarios well understood and in test
 - Production-grade version required in May by ALICE (production: September)
- Apache Kudu Backend
 - Development currently on hold (focus on Oracle Backend)
 - Pending performance evaluation of Kudu



Early adopters at CERN

- ALICE
 - Oracle Backend and custom O2 Backend streaming changes to include them in the physics data stream
 - First tests of the O2 Backend successful
 - Preparing for large-scale tests in ALICE infrastructure
- protoDUNE
 - Making archived data available online in Grafana
 - InfluxDB Backend used in selected systems

Streaming of data from WinCC OA to external applications (e.g. through Apache Kafka)

 interest from the radiation monitoring group

Large-scale system tests at CERN

- Goal: evaluate the NextGeneration Archiver at the scale of CERN systems (hundreds of interconnected systems)
 - Write and query performance of different backends
 - Long-term reliability: no resource leaks or performance degradation
 - Handling of event avalanches
 - Recovering from network issues and database disconnections
 - Upgrade and rollback procedures for existing Oracle schemas
- First results have already influenced the readout architecture of the NGA

Industrial Data Analytics

Machine Learning and Big Data Analytics to build smarter control systems

- Multiple Benefits proven by R&D activities in 6 years of openlab collaboration with Siemens:
 - Extend the monitoring capabilities of the control systems
 - Reduce operational and maintenance costs
- +40 use-cases identified and many in progress:
 - LHC circuit monitoring, Linac3 beam source optimization, electron-cloud heat in Cryogenics, vacuum leak detection, Linac4 accelerator...

Smart Data for Industrial Control Systems

2 Different groups of data analytics activities

Use-Cases and algorithms

Design and development of data analytics algorithms to match use-case requirements

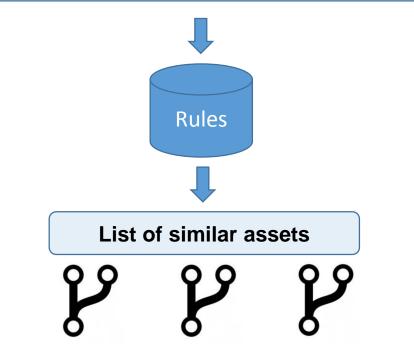
- Expert system / condition monitoring
 - LHC Circuit Monitoring
 - Condition Monitoring for Cryogenics
 - Analysis of control systems alarms based on KPIs
- Machine Learning
 - Leak detection in cooling & ventilation
 - Linac3 optimization

Analytical Platforms

Design, development and evaluation of the data analytics platform for control systems

Siemens platforms:

- Smart Industrial IoT (Smart IIoT)
- Signal Event Processing Language (SEPL) and SEPLab
- PeregrineDB

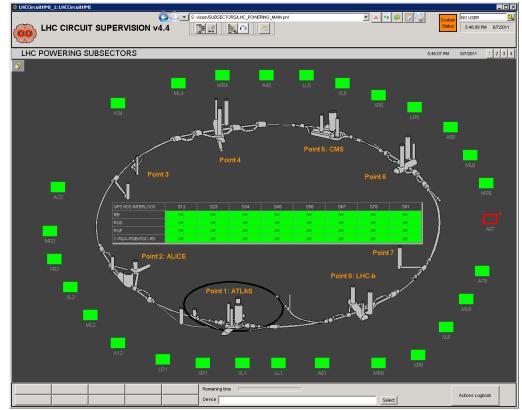


Condition monitoring analysis

- > Expert system
 - Translate experts' knowledge into formulation sets / rules
 - Rules central storage
 - Rule template to be reused, parametrized, validated
- > Signal Processing Language (SPL):
 - Domain specific language (DSL)
 - Simple formulation
 - Time reasoning and temporal expression
 - Mathematical and logical functions

Rule definition: Truth(sma(I_Meas, 1m30s)> I_Min)): duration(>=1h)

LHC circuit monitoring

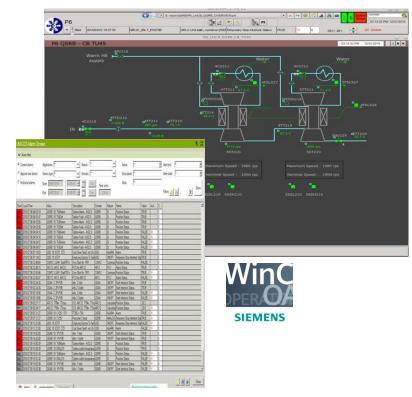

Condition monitoring analysis (in collaboration with TE-MPE)

> Evaluation of the LHC circuits health

- Degradation after many years of operations
- Monitoring conditions:
 - anomalous change of current flows, impedance, circuit functioning ...

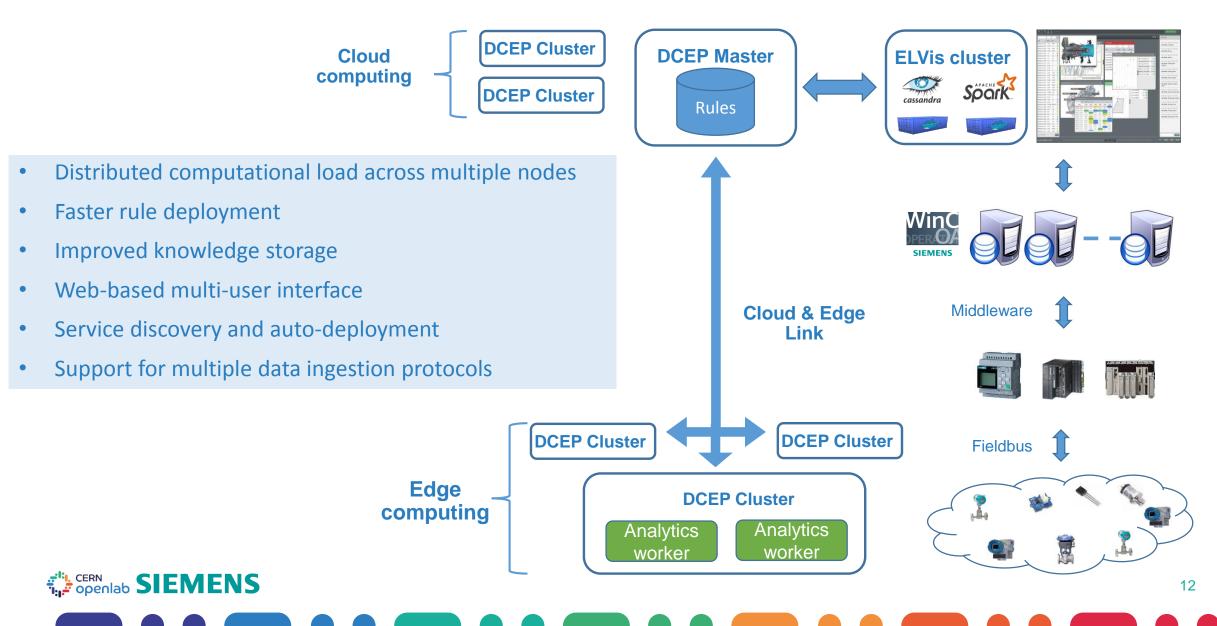
Challenges

- Assessment of the system status involves
 ~ 500K Signals (electrical circuits, magnets, power converters, switches)
- Readout (from 10KHz to 1Hz)
- Time reasoning over desynchronized streams



16 WinCC OA servers, 44 industrial FECs, 2800 radiation-hard devices

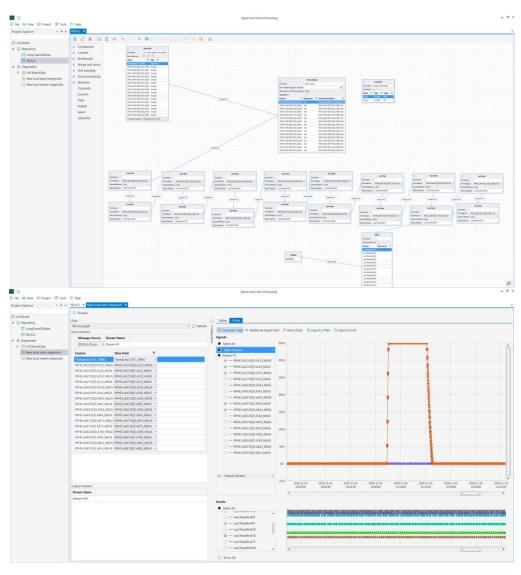
Events/Alarms generated by LHC control system


Condition monitoring of control alarms and events

- > Industrial Control Systems for accelerator and technical infrastructure:
 - 220 WinCC OA apps over ~150 physical host with 25M Data Point Elements
 - ~5M I/O channels with 0.5M defined alarms
- > Huge amount of events & alarms generated by control processes
- **GOAL:** support system experts/operators to identify critical conditions
- > Anomaly detection based on KPI and specific conditions:
 - Alarms number, integration in time, distribution, frequency, ...
 - Detect in/decrease of KPI for time intervals
 - Multi-index/KPI analysis
 - Pattern mining analysis described by variables specifications (rules)
 - Identification of outliers for the predefined KPIs

Siemens Smart Industrial IoT analytical platform

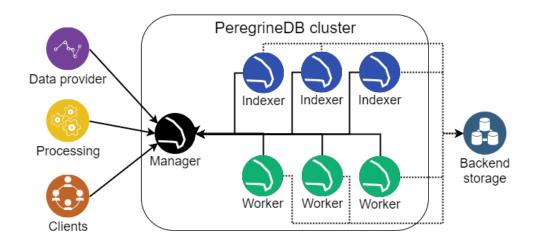
Signal Event Processing Language (SEPL)


Engineering tool to define analytical workflows

Status:

- Multiple versions of SEPLab released and evaluated
- Handle numerical data and events at the same time
- Automatic input data parsing

> Next


- Integration with new Smart IIoT interface/API
- Macro for simple script and template
- Support for both online and historical data (rule validation)

PeregrineDB for batch condition monitoring

In collaboration with ITMO university

- > Database optimized for fast , high availability storage and retrieval time for time series data
- > Extracts relevant inputs from big historical data sets to feed CEP
- > Main features:
 - ✓ Aggregation and sampling
 - ✓ Data compression
 - ✓ Support for different backends, data formats
 - ✓ Lightweight index
 - ✓ High speed at ingestion and extraction
 - ✓ Distributed architecture

Summary & outlook

- Next Generation Archiver:
 - Good progress on all components
 - Promising results of pilot deployments at CERN
 - Considerable testing efforts required before deployment in ALICE in 2019
- Data Analytics:
 - > New use-cases identified for both Conditioning Monitoring and ML:
 - > LHC Circuit, Cryo, alarms KPI analysis, optimization of linac3 beam source
 - Various versions of Smart IIoT platform and SEPLab tested
 - Cloud computing: initial ELVis integration with Smart IIoT platform
- Successful collaboration with Siemens advancing at good pace
- > Widening the collaboration scope: **new resources**, **new activities**
 - New fellow: Anthony Hennessey
 - Evaluation of Siemens PLC AI module against CERN use-cases

> A **big thanks** to **Siemens** for the fruitful collaboration and continuous support!

CERN BE-ICS https://be-dep-ics.web.cern.ch/

