
Maurizio Pierini

Deep Learning
For Dune Real-Time
Event Processing

๏ Big Liquid Argon detector to observe neutrinos produced by FERMILAB
and sent to South Dakota

๏ Designed to precisely measure (anti)neutrino oscillations and measure
matter/anti-matter differences

๏ Sensitivity to rare events, e.g., close-by Supernovae explosion,
proton decay

What is DUNE

 2

๏ 1500 m underground

๏ 4 modules, each consisting of
10 kton LAr

๏ can observe charged particles
produced by neutrinos (or by
noise)

๏ Unlike LHC: no vertex
interaction point: the
interaction can happen anywhere
(and anytime, e.g., for
supernovae)

๏ Observe XY and XZ 2D views.
Needs to reconstruct the 3D
image

What is DUNE

 3

66m 19m

18m

๏ First application of Deep Learning
to particle physics was a neutrino
reconstruction problem

๏ Successfully demonstrated power of
computing vision techniques for our
problems

๏ Problem scale smaller than what we
want to face

๏ Smaller detector

๏ NN applied locally to region already
identified by classic algorithms

๏ Such an offline approach is under
study for DUNE as well (not the
topic of this project)

Neutrinos & Deep Learning

 4

๏ All problems track down to the fact that neutrinos
don’t like to interact with other particles. So one
needs A BIG DETECTOR and a LOT OF NEUTRINOS to make
sure that a decent amount will be seen.

๏ Due to this

๏ Very high data rates (ip to 4.6 TB/s!)

๏ Limited bandwidth cannot be handled using large-
energy thresholds, since rare events (e.g.,
supernova neutrinos) come at low energy

๏ Real physics events are very rare, and the
majority of the readout for each of these rare
events is mostly noise.

๏ The noise outweighs the real physics in data
size by a factor 107

๏ Internal background events from 39Ar decay : 1
event/second/l

๏ Need to filter noise, apply zero-suppression and
have region of interest selection to reduce the
data rate and allow for trigger-less data
taking.

What is Challenging of DUNE

 5

Built on
repeated
structure

Total : 150
readout planes/

module

2560 readout
channels/plane

384000
channels/module

ProtoDUNE

 6

“Small scale” prototype built and operated at CERN

๏ This partnership with MICRON aims to integrate deep learning solution
in the real-time data acquisition process of the experiment

๏ Two use cases identified:

๏ Step1: design a local-noise suppression algorithm that could reduce
the event size and reduce throughput

๏ Step2: design a by-module (or global?) event classifier capable of
rejecting the obvious background and free some bandwidth

๏ Each step will consists in

๏ designing the ML model

๏ integrate it on MICRON hardware

๏ (eventually) produce a demonstrator on simulation or ProtoDUNE data

Project Plan

 7

An example: Noise Suppression

 8

Example taken from MicroBooNE (smaller scale neutrino experiment operated @FNAL)

๏ We already solved a similar problem for
LHC events (pileup suppression)

๏ take a single hit

๏ look nearby & build a near-neighbours
graph

๏ process the graph with Message-passing
NN, classifying good vs noise events

๏ Works very well there, should also work
here

An example: Noise Suppression

 9

2

FIG. 1. Depiction of the e↵ect of CHS. The full event (left), the event after CHS is applied (middle) and the Ground Truth
(right) are shown. A Z ! ⌫n̄u+jets event is superimposed to 80 pileup events. Particles from the LV are shown in orange
(dark) and those from pileup in blue (light).

II. RELATED WORK

Owing to the CMS [6] and ATLAS [7] vertex reso-
lution, charged particles from pileup can be accurately
removed, based on their vertex information, in particu-
lar in the central region. This technique, referred to as
CHS, greatly simplifies the problem, as can be seen in
Figure 1. The main challenge becomes correcting for the
neutral pileup contribution, for which su�cient vertex
information is typically unavailable. Early approaches,
such as the area-subtraction method [8–11] employed in
LHC Run I (2009-2012) analyses, correct the event based
only on the characteristic per-event pileup energy density.
While they help in obtaining unbiased estimates of the
jets four-momenta, they are a↵ected by a serious resolu-
tion loss with increasing number of pileup interactions,
even when extended to jet shapes [12]. This motivated
the introduction of new algorithms for the LHC Run II
(2015-2018).

Currently adopted pileup mitigation techniques con-
sist of rule-based algorithms and usually operate on a
per-particle basis, tailored to suppress particles believed
to originate from pileup interactions, or to weight them
proportionally to their probability of originating from
the hard interactions. Examples of the former category
include the SoftKiller algorithm [13]. The PUPPI algo-
rithm [1] employed by the CMS collaboration in the LHC
Run II is an example of the latter category. These two
algorithms can be fairly considered to be state-of-the-art
and will be used for comparison in our analysis. Our work
aims to extend the traditional PUPPI setup using Deep
Learning. As for PUPPI, the model we present here can
be used in conjunction with other tools such as pileup jet
identification [14], which removes entire jets, or grooming
(e.g. filtering [15], trimming [16] or pruning [17]).

Machine Learning (ML) traditionally plays a promi-
nent role in High Energy Physics (HEP), as discussed for
instance in Ref. [18]. Among the many existing proof-
of-principle studies, few applications have already been
deployed in the central data processing of major HEP ex-

periments. For instance, recurrent architectures proved
fruitful in bottom-quark identification [19, 20] and Con-
volutional Networks in neutrino physics [21]. Graph
Networks have very recently been used for jet tagging,
matching the performances of other deep learning ap-
proaches [22], and to identify interesting typologies at
the LHC [23], and in IceCube [24].
The models considered in this work are based on three

di↵erent network architectures: fully-connected layers,
GRU [5], and GGNN [4]. To the best of our knowl-
edge, models of this kind have not yet been applied
to pileup mitigation. Previous work involving Convolu-
tional Neural Networks for pileup mitigation is discussed
in Ref. [25]. This approach requires to bin the (⌘, �)
plane to generate jet images, and is applied to cropped
regions around the jet. Our method operates on the full
event, allowing for improved resolution of global vari-
ables such as the Missing Transverse Energy (MET). As
in PUPPI, our method applies to individual particles and
is particularly suitable for experiments using a particle-
flow approach for event reconstruction, such as CMS [26].

III. DATASET

The dataset employed in this work consists of simula-
tions of LHC proton-proton collisions at a center-of-mass
energy of 13 TeV, created using the PYTHIA 8.223 [27]
event generator, tune 4C. The generated events corre-
spond to a sample of Z bosons decaying to a pair of
neutrinos and produced in association with at least one
quark or gluon, resulting in at least one jet. The gen-
eration of the underlying event is turned o↵. The list
of particles originating from the hard collision and the
consequent shower of quarks and gluons are given as in-
put to the DELPHES 3.3.2 [28] detector simulation soft-
ware. DELPHES is mainly used as a convenient tool to read
the HEPMC files generated by PYTHIA, overlay the pileup
events, and store the event content in a ROOT [29] file,
preserving the provenance information for each particle
(LV or pileup events). No detector resolution or e�ciency

4

FIG. 2. Conceptual depiction of the GGNN model architecture. The event is pre-processed by linking local particles together,
after which it is fed to 3 GGNN layers with time-steps [2, 1, 1] and including a residual connection from the first to the third
layer. This is then passed, individually per graph node, to a fully-connected network that outputs a [0,1] pileup classification
score. Adam is used with a learning rate of 0.004 to minimize the binary cross-entropy. The output of the network is checked
to be a well-calibrated probability.

as input the averaged incoming message (4).

h0
v = xvk0 (2)

aiv,vj = Ath
i�1
vj , 8vj : vj

t
�! v (3)

hi
v = GRU(hi�1

v ,aiv,v0 , ...,a
i
v,vN) (4)

A full model can be built by stacking multiple GGNN
layers together with a given number of time steps for
each, usually low, and adding fully connected layers
shared among vertices at the end to produce the out-
put of the per-node classification task. For intermediate
layers, the input is taken to be the output of the previous
layer. Our final PUPPIML model (pictorially represented
in Fig. 2) consists of 3 layers with time-steps [2, 1, 1],
a node representation of size 100 and a residual connec-
tion from the first to the third layer. We train the model
using the Adam optimizer [30] with a learning rate of
0.004 and early stopping, and apply no pre-processing to
our inputs. We include as part of the graph the charged
particles even when CHS is applied, as they aid in the
classification of neighbouring particles. We train a dif-
ferent network for each mean pileup level (20, 80 and
140). We discuss the generalization to a range of pileup
levels in Sec. VD.

For our graph representation, we choose to connect all
pairs of particles separated by a distance �R < R1 in the
⌘ � � space, uniformly binning the distance �R into N0

discrete edge types. We make all graphs undirected by
introducing edges in both the forward and backward di-
rection for each pair of connected particles. Moreover, as
opposed to PUPPI, we do not find it necessary to rescale
the particles’ four-momenta and simply discard all par-
ticles for which the network predicts a probability lower

than pcut. The choice of these parameters is discussed in
Sec. V.
All our models are trained in Keras v2.1.2 [34] with

a Tensorflow v1.2.1 [35] backend, or in Tensorflow di-
rectly. The implementation of the GGNN is based on
publicly available code [36] published by Microsoft under
the MIT license.

V. RESULTS

nPU 20 (CHS) 80 (CHS) 140 (CHS) 80 (No CHS)
pT 92.3% 92.3% 92.5% 64.9%

PUPPI weight 94.1% 93.9% 94.4% 65.1%
Fully-connected 95.0% 94.8% 94.8% 68.5%

GRU 94.8% 94.8% 94.7% 68.8%
GGNN 96.1% 96.1% 96.0% 70.1%

TABLE I. Area under the curve for the di↵erent discriminat-
ing variables and models. The best results are highlighted in
bold.

We first study the performance of the proposed al-
gorithms by considering the area under the ROC curve
(auc) for all our methods. We perform a random 20-trial
hyperparameter scan for all of our architectures and se-
lect the best network as measured by auc on validation
data, but note that their performance is not heavily de-
pendent on any of them. Using this metric, Table I and
Figure 3 quantify, on test data, the discriminating power
of the variables at 20, 80 and 140 mean pileup when CHS
is applied and at 80 mean pileup when it is not. Since
SoftKiller and PUPPI base the decision of whether a parti-
cle comes from the LV on its transverse momentum or on
the PUPPI weight calculated from ↵ respectively, the first
two rows are meant as an indicator of their expected per-
formances. For this purpose, we allow the PUPPI weight
to take on negative values if it is to the left of the me-
dian. We observe that the GGNN consistently obtains

7

FIG. 5. Depiction of the e↵ect of running the di↵erent pileup mitigation algorithms on three jets at nPU = 80. Particles from
the LV are shown in orange (dark) and pileup particles are shown in blue (light). From left to right for each jet (i.e., each row),
we show the ground truth, the jet contaminated by the parasitic interactions, and the reconstructed jet after running PUPPI,
SoftKiller and our approach, PUPPIML. PUPPIML seems to improve on PUPPI by eliminating some of the low pT particles close to
jets (dotted ellipses) and on SoftKiller by eliminating some of the high pT pileup particles that are far away from jets (dashed
ellipses). All algorithms are run after applying CHS.

Trained on nPU

E
va
lu
at
ed

on
n
P
U

20 80 140 20+80+180
20 96.1% 95.6% 95.0% 96.1%
80 95.7% 96.1% 95.9% 96.1%

140 95.1% 96.0% 96.0% 96.1%

TABLE II. Area under the curve for models trained and eval-
uated on di↵erent pileup levels. We train models at nPU equal
to 20, 80 and 140, and on a dataset containing equal splits of
the three. While the performance decreases when testing on
previously unseen pileup levels it is still superior to the Soft-

Killer and PUPPI proxies. A model trained on the combined
dataset is capable of learning a strategy that generalizes to a
wide range of pileup levels. Some results are highlighted for
visual clarity.

on nPU. Since the model score can be interpreted by
construction as a probability, PUPPIML can be used to
weight each particle by its probability to originate from
the leading vertex.

In terms of future work, we believe that a further explo-
ration of similar locality-preserving architectures, in par-
ticular variations of Message Passing Neural Networks,

Tune 4C Tune 1 CUEP8M1
96.0% 95.4% 95.9%

TABLE III. Area under the curve for the model trained on
Z ! ⌫⌫ events at nPU = 140 using tune 4C when evaluated on
di↵erent PYTHIA8 tunes. The most significant drop is observed
using Tune 1, yet with a performance still superior to the
SoftKiller and PUPPI proxies.

Z ! ⌫⌫ H ! bb H ! gg

96.0% 95.7% 95.7%

TABLE IV. Area under the curve for the model trained on
Z ! ⌫⌫ events at nPU = 140 using tune 4C when evaluated
on di↵erent decay processes. The model is able to generalize
to decays involving multiple jets and including bottom quarks
and gluons with only a small decrease in auc performance.

could further improve performances. Adversarial train-
ing, requiring the network to correct the full event di-
rectly as opposed to simply classifying individual parti-
cles, could aid in improving the resolution gain on jet
substructure quantities.

