Deep Learning For Dune Real-Time Event Processing

Maurizio Pierini

Uhat is DUME

- Big Liquid Argon detector to observe neutrinos produced by FERMILAB and sent to South Dakota
- Designed to precisely measure (anti)neutrino oscillations and measure matter/anti-matter differences

European

Sensitivity to rare events, e.g., close-by Supernovae explosion, proton decay

Uhat is DUME

- 1500 m underground
- 4 modules, each consisting of 10 kton LAr
- can observe charged particles produced by neutrinos (or by noise)
- Unlike LHC: no vertex interaction point: the interaction can happen anywhere (and anytime, e.g., for supernovae)
- Observe XY and XZ 2D views. Needs to reconstruct the 3D image

Neutrinos & Deep Learning

- First application of Deep Learning to particle physics was a neutrino reconstruction problem
- Successfully demonstrated power of computing vision techniques for our problems
- Problem scale smaller than what we want to face
- Smaller detector
- NN applied locally to region already identified by classic algorithms
- Such an offline approach is under study for DUNE as well (not the topic of this project)

What is Challenging of DUME

- All problems track down to the fact that neutrinos don't like to interact with other particles. So one needs A BIG DETECTOR and a LOT OF NEUTRINOS to make sure that a decent amount will be seen.
- Due to this
 - Very high data rates (ip to 4.6 TB/s!)
 - Limited bandwidth cannot be handled using largeenergy thresholds, since rare events (e.g., supernova neutrinos) come at low energy
 - Real physics events are very rare, and the majority of the readout for each of these rare events is mostly noise.
 - The noise outweighs the real physics in data size by a factor 10⁷
 - Internal background events from ³⁹Ar decay : 1 event/second/l
 - Need to filter noise, apply zero-suppression and have region of interest selection to reduce the data rate and allow for trigger-less data taking.

Built on repeated structure

Total: 150 readout planes/ module

2560 readout channels/plane

384000 channels/module

ProtoDUME

Dual-Phase Cryostat

Single-Phase Clean Room and Cold Box

Single-Phase Cryostat

"Small scale" prototype built and operated at CERN

Project Plan

- This partnership with MICRON aims to integrate deep learning solution in the real-time data acquisition process of the experiment
- Two use cases identified:
 - Step1: design a local-noise suppression algorithm that could reduce the event size and reduce throughput
 - Step2: design a by-module (or global?) event classifier capable of rejecting the obvious background and free some bandwidth
- Each step will consists in
 - designing the ML mode?
 - integrate it on MICRON hardware
 - (eventually) produce a demonstrator on simulation or ProtoDUNE data

An example: Noise Suppression

Example taken from MicroBooNE (smaller scale neutrino experiment operated @FNAL)

An example: Noise Suppression

- We already solved a similar problem for LHC events (pileup suppression)
 - take a single hit
 - look nearby & build a near-neighbours graph
 - process the graph with Message-passing NN, classifying good vs noise events
- Works very well there, should also work here

