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Motivation 
The challenge: triggering at (HL-)LHC
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The challenge: triggering at (HL-)LHC

Extreme bunch crossing frequency of 40 MHz → extreme data rates O(100 TB/s)

“Triggering” = filter events to reduce data rates to manageable levels

 3
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The challenge: triggering at (HL-)LHC
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CHALLENGE: maintain physics in increasingly complex 
collision environment 

→ untriggered events lost forever!

Sophisticated techniques needed to preserve the physics!

Squeeze the beams to increase data rates 

→ multiple pp collisions per bunch crossing (pileup)

2016: <PU> ~ 20-50 

2017 + Run 3: <PU> ~ 50-80 

HL-LHC: 140-200

Extreme bunch crossing frequency of 40 MHz → extreme data rates O(100 TB/s)

“Triggering” = filter events to reduce data rates to manageable levels
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A typical trigger system
Triggering typically performed in multiple stages @ ATLAS and CMS

Javier Duarte I hls4ml 6

CMS Trigger
High-Level 
TriggerL1 Trigger

1 kHz 
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)


• 99.75% rejected


• decision in ~4 μs 

• High-Level Trigger (software)


• 99% rejected


• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline

L1 Trigger High-Level

Trigger

Absorbs 100s TB/s 
Trigger decision to be made in O(μs) 
Latencies require all-FPGA design

Computing farm for detailed 
analysis of the full event 
Latency O(100 ms)

For HL-LHC upgrade: latency and output rates will 
increase by ~ 3 (ex: for CMS 3.8 → 12.5 μs @ L1)

custom hardware

computing farm
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The latency landscape @ LHC

FPGAs

computing farm
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CMS Trigger
High-Level 
TriggerL1 Trigger

1 kHz 
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)


• 99.75% rejected


• decision in ~4 μs 

• High-Level Trigger (software)


• 99% rejected


• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline
L1 Trigger High-Level


Trigger

100 ms 1 s

ML methods typically employed in 
offline analysis or longer latency 
trigger tasks


Many successes in HEP: identification of b-
quark jets, Higgs candidates, particle 
energy regression, analysis selections, ….

ex, identification of b-quark jets

Deep neural network based 
on high-level features

both offline and @ HLT

computing farm
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The latency landscape @ LHC

FPGAs

computing farm
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CMS Trigger
High-Level 
TriggerL1 Trigger

1 kHz 
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)


• 99.75% rejected


• decision in ~4 μs 

• High-Level Trigger (software)


• 99% rejected


• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline
L1 Trigger High-Level


Trigger

100 ms 1 s

ML methods typically employed in 
offline analysis or longer latency 
trigger tasks


Many successes in HEP: identification of b-
quark jets, Higgs candidates, particle 
energy regression, analysis selections, ….

ex, Higgs discovery

ML algorithms used offline for 
✴ improving Higgs mass resolution with 

particle energy regression 
✴ enhancing signal/background 

discrimination

computing farm
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The latency landscape @ LHC
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ML methods typically employed in 
offline analysis or longer latency 
trigger tasks


Many successes in HEP: identification of b-
quark jets, Higgs candidates, particle energy 
regression, analysis selections, ….

Javier Duarte I hls4ml 6

CMS Trigger
High-Level 
TriggerL1 Trigger

1 kHz 
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)


• 99.75% rejected


• decision in ~4 μs 

• High-Level Trigger (software)


• 99% rejected


• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline
L1 Trigger High-Level


Trigger

computing farm

FPGAs

Exploration of ML algorithms in         
low-latency, real-time processing 
has just begun!

What can we do in ~ μs on one FPGA?

100 ms 1 s1 ns 1 μs
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Physics case: jet tagging

Study a multi-classification task to be implemented on FPGA: discrimination 
between highly energetic (boosted) q, g, W, Z, t initiated jets

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied
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 top
other quark
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ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

Z W gluon

t→bW→bqq

3-prong jet

Reconstructed as one massive jet with substructure

q/g backgroundW→qqZ→qq

2-prong jet 2-prong jet no substructure

and/or mass ~ 0

 9
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Physics case: jet tagging
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ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

Z W gluon

Input variables: several obervables known to have high discrimination 
power from offline data analyses and published studies [*] 

[*] D. Guest at al. PhysRevD.94.112002, G. Kasieczka et al. JHEP05(2017)006, J. M. Butterworth et al. PhysRevLett.100.242001, etc..

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.112002
https://link.springer.com/article/10.1007/JHEP05(2017)006
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.242001
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Physics case: jet tagging

• Fully connected neural network with 16 expert-level inputs: 

- Relu activation function for intermediate layers 

- Softmax activation function for output layer

 11

16 inputs

64 nodes 
activation: ReLU

32 nodes 
activation: ReLU

32 nodes 
activation: ReLU

5 outputs 
activation: SoftMax

AUC = area under ROC curve 
(100% is perfect, 20% is random)

• We train (on GPU) the five output multi-classifier on a sample of ~ 1M events with two 
boosted WW/ZZ/tt/qq/gg anti-kT jets

better
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high level synthesis for machine learning

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.

-

	

/

hls  4  ml

hls4ml

HLS  4  ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

https://hls-fpga-machine-learning.github.io/hls4ml/

Implemented an user-friendly and automatic tool to develop and optimize FPGA 
firmware design for DL inference: 

• reads as input models trained with standard DL libraries 
• uses Xilinx HLS software (accessible to non-expert, engineers resource not common in HEP) 
• comes with implementation of common ingredients (layers, activation functions, binary NN …) 

https://arxiv.org/abs/1804.06913

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913


Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs23.01.2019  13

With hls4ml package we have studied/optimized the FPGA 
design through:


• compression: reduce number of synapses or neurons 

• quantization: reduces the precision of the calculations (inputs, 
weights, biases) 

• parallelization: tune how much to parallelize to make the 
inference faster/slower versus FPGA resources

Efficient NN design for FPGAs
FPGAs provide huge flexibility


Performance depends on how well you 
take advantage of this

Constraints:
Input bandwidth
FPGA resources
Latency 

NN training

FPGa project 

designing
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Efficient NN design: quantization
• Quantify the performance of the classifier with the AUC 

• Expected AUC = AUC achieved by 32-bit floating point 
inference of the neural network 
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• DSPs (used for multiplication) are often 
limiting resource


- DSPs have a max size for input (e.g. 
27x18 bits), so number of DSPs per 
multiplication changes with precision

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

Efficient NN design: compression
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Parallelization: DSPs usage
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Figure 11: DSP usage in the pruned 3-layer model as a function of the network precision. The various
curves illustrate resource usage for di�erent resource usage factors.

Figure 12: FF and LUT usage in the pruned 3-layer model as a function of the network precision. The
various curves illustrate resource usage for di�erent resource usage factors.

corresponding to the four layers of neuron values that must be computed, with each increment in reuse
factor. This is in line with expectations from Eq. 2.4 where additional reuse of multipliers in a given
layer calculation incurs added latency. In the right plot of Fig. 13, the initiation interval is shown for
di�erent reuse factors. By design, the initiation interval and the reuse factor match as a new input can
be introduced to the algorithm only when all multiplications for a given DSP multiplier are completed.
At very low network precision, the HLS synthesis initiation interval is smaller than the reuse factor.
This is because multiplications are no longer implemented in DSPs but through FFs and LUTs.

– 19 –

Fully parallel

Each mult. used 1x

Each mult. used 2x 

Each mult. used 3x 

…
Reuse factor: how much to parallelize operations in a hidden layer
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Parallelization: Timing

Figure 13: Latency (left) and pipeline interval (right) in the pruned 3-layer model as a function of the
network precision. The various curves illustrate resource usage for di�erent resource usage factors.
The latency is given in clock cycles for a 200 MHz clock frequency.

3.3 Firmware Implementation

In this section, we compare the resource estimates from HLS synthesis with a firmware implementation
after final Vivado optimization. To get a rough scaling of the di�erences between the HLS synthesis
resource estimates and a final firmware implementation, we use a "bare" firmware design that allows for
the compilation of the ML algorithm with almost no additional resources. This “bare” implementation
consists of a simple VHDL wrapper that connects the available pins on the FPGA input/output directly
to the hls4mlfirmware block with the assumption that all inputs are delivered on the same clock edge
for evaluation. Including the VHDL wrapper, we perform the firmware implementation and compare
the resulting resource usage.

When performing the implementation, we noticed that the target latency benchmarks in HLS
could not be attained, and we had to reduce the clock speed so as to allow for the compiled algorithm
to meet the timing constraints. The amount needed to reduce of the clock speed became larger with
NN complexity; algorithms that took a large part of the FPGA required slower clocks. For the 3-layer
pruned NN at 32-bit precision, a clock of 8 ns was needed to implement an HLS block designed for
5 ns. This is observed for all reuse factors. A simple solution to overcome this issue is to synthesize
the HLS design for a slightly faster clock than intended. We also note that di�erent versions of Vivado
HLS have varying degrees of success meeting timing. We have had more success meeting timing with
Vivado 2�16.4 than 2�17.2.

Due to the limited number of pins, we now consider a di�erent neural network model with fewer
inputs. BK: subtle point to clarify how this IO limitation will a�ect everyone. In this case, we consider
a small 1 hidden layer model with 10 inputs and 1 output node. We also tested with the 3-layer
pruned network and we find similar quantitative conclusions in the regions where the number of pins
was su�cient for implementation. For the rest of this subsection, we present results with the 1-layer
network using an 8 ns clock at implementation.

– 20 –

Fully parallel

Each mult. used 1x
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…
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…

1st iteration
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……

Figure 6: Illustration of the iterative parameter pruning and retraining with L1 regularization proce-
dure. The distribution of the absolute value of the weights relative to the maximum absolute value
of the weights is shown after each step of the pruning and retraining procedure. In the top left, the
distribution before compression is shown, while in the bottom right, the distribution after compression
is displayed.

Parallelization

The trade-o� between latency and FPGA resource usage is determined by the parallelization of the
inference calculation. In hls4ml this is configured with a multiplier “reuse factor” that sets the number
of times a multiplier is used in the computation of a layer’s neuron values. With a reuse factor of one,
the computation is fully parallel. With a reuse factor of R, 1/R of the computation is done at a time
with a factor of 1/R fewer multipliers.

FPGA multpliers are pipelined; therefore, the latency of one layer computation, Lm, is approxi-
mately

Lm = Lmult + (R � 1) ⇥ I Imult + Lactiv, (2.4)

where Lmult is the latency of the multiplier, I Imult is the initiation interval of the multiplier, and Lactiv
is the latency of the activation function computation. Equation 2.4 is approximate because, in some

– 13 –

Latency of layer m
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The hls4ml package
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Program Flow
python keras-to-hls.py -c keras-config.ymlTranslation

Inputs

Config

• IOType: parallelize or serialize


• ReuseFactor: how much to parallelize 


• DefaultPrecision: inputs, weights, biases

my-hls-test/:
build_prj.tcl  
firmware  
myproject_test.cpp

 18
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Extend               with Intel support

• hls4ml supports Xilinx FPGAs and software 
from beginning 

• Currently working to extend the package to 
work with Intel/Altera Quartus HLS 

- work in progress: technical complications 
slowed us down (software licenses and 
installation, Quartus HLS version @ CERN, …) 

• First results encouraging (based on emulation 
and to be confirmed with actual deployment 
on card)

 19

3-layer model
Quartus 14
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CMS Trigger
High-Level 
TriggerL1 Trigger

1 kHz 
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)


• 99.75% rejected


• decision in ~4 μs 

• High-Level Trigger (software)


• 99% rejected


• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline
L1 Trigger High-Level


Trigger

computing farm

FPGAs

Focused on L1 
trigger as first 
application 

→ pure FPGAs 

What can we do in < us on one FPGA?

100 ms 1 s1 ns 1 μs

The latency landscape @ LHC
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CMS Trigger
High-Level 
TriggerL1 Trigger

1 kHz 
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)


• 99.75% rejected


• decision in ~4 μs 

• High-Level Trigger (software)


• 99% rejected


• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline
L1 Trigger High-Level


Trigger

computing farm

FPGAs

100 ms 1 s1 ns 1 μs

→ CPU+FPGA co-processor

The latency landscape @ LHC

Use case @ LHC to accelerate slow 
algorithms (ex: tracking) and ML 
inference for HLT and offline analysis

Ongoing R&D on heterogeneous computing 
on-site (@CERN) and on commercial clouds 
(Microsoft Brainwave, Amazon Web Services, 
Google TPU cloud)
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goes to the cloud

• Xilinx SDAccel development environment allows the 
development/running of connected FPGA kernels 
and CPU processes 

- any FPGA application defined in HLS, OpenCL, or 
VHDL/Verilog can be accelerated 

• hls4ml project only needs to be wrapped to 
provide specific I/O  ports configuration for SDAccel 
to interface properly

 22

• Amazon Web Service provides co-processor 
CPU+FPGA systems with Xilinx Virtex Ultrascale+ VU9P

• Succesfully accelerated 1D CNN example project on 
AWS F1: 10 four-channel inputs , 3 convolutional layers, 2 
dense layers, 5 outputs → latency 116 ns
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DL acceleration on Intel FPGAs @ CERN
• hls4ml developed from start to target very 

low latency 

• Latencies at HLT less strict allowing 
inference of much bigger networks  
→ different firmware project design wrt L1 
trigger application 

• No need to reinvent the wheel… 

• Work in progress: accelerate DL inference 
of predefined big networks through Intel 
softwares such as OpenVino to benchmark 
a specific physics case 

- perform studies on-site with Intel Arria 10 GX 
FPGA available at CERN

 23

Intel® Programmable Acceleration 
Card with Intel Arria® 10 GX FPGA 
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Summary

Introduced a new software/firmware package hls4ml 

Automated translation of everyday machine learning inference into firmware in ~ minutes 
Tunable configuration for optimization of your use case 

First application is single FPGA, <1 us latency for L1 trigger 
Supports Xilinx HLS but will be extended for Intel support with Quartus HLS 
Explore also applications for acceleration with CPU+FPGA co-processors  

for long latency trigger tasks 

For more info 
https://hls-fpga-machine-learning.github.io/hls4ml/ 

https://arxiv.org/abs/1804.06913

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913

