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Motivation
The challenge: triggering at (HL-)LHC

23.01.2019 Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs



The challenge: triggering at (HL-)LHC

Extreme bunch crossing frequency of 40 MHz — extreme data rates O(100 TB/s)
“Triggering” = filter events to reduce data rates to manageable levels




The challenge: triggering at (HL-)LHC

Extreme bunch crossing frequency of 40 MHz — extreme data rates O(100 TB/s)
“Triggering” = filter events to reduce data rates to manageable levels

Squeeze the beams to increase data rates
— multiple pp collisions per bunch crossing (pileup)
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CHALLENGE: maintain physics in increasingly complex
collision environment

— untriggered events lost forever!

Sophisticated techniques needed to preserve the physics!




A typical trigger system

Triggering typically performed in multiple stages @ ATLAS and CMS

custom hardware 1 kHz
100 kHz 1 MB/evt -
‘ 4 40 MHz computing farm Offline

((\Q (

Absorbs 100s TB/s
Trigger decision to be made in O(us)
Latencies require all-FPGA design

Computing farm for detailed
analysis of the full event

Latency O(100 ms)

For HL-LHC upgrade: latency and output rates will
increase by ~ 3 (ex: for CMS 3.8 = 125 us @ L1)

23.01.2019 Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs S



misid. probability

The latency landscape @ LHC

100 ms 1s

ex, identification of b-quark jets
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b-jet efficiency trigger tasks

Deep neural network based Many successes in HEP: identification of b-

on high-level features quark jets, Higgs candidates, particle

energy regression, analysis selections, ....
both offline and @ HLT
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The latency landscape @ LHC

100 ms 1s

ex, Higgs discovery

19.7 b (8 TeV) + 5.1 fb™ (7 TeV)

x10°F
35EF CMS S/(S+B) weighted sum

¢ Data

—— S+B fits (weighted sum)
=== B component

—

computing farm Offline
<@

C §o=taan ‘ {9
05 #,=124.70  0.34 GeV 9

S/(S+B) weighted events / GeV

ML methods typically employed Iin

- 11_0 115 120 125 130 135 140 145 150 Oﬁllne anaIySIS or IOnger Iatency
My (GeV) trigger tasks
ML algorithms used offline for
* improving Higgs mass resolution with Many successes in HEP: identification of b-
particle energy regression quark jets, Higgs candidates, particle
* enhancing signal/background energy regression, analysis selections, ....

discrimination
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The latency landscape @ LHC

1 ns 1 us 100 ms 1s
FPGAs |
6( / computing farm
»g(\@g ~<@ P9 Ofﬂlne

\/ 99

Exploration of ML algorithms in

low-latency, real-time processing ML methods typically employed in
has just begun! offline analysis or longer latency
trigger tasks

N~ ?
What can we do in S On one FPGA ) Many successes in HEP: identification of b-

quark jets, Higgs candidates, particle energy
regression, analysis selections, ....
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Physics case: jet tagging

Study a multi-classification task to be implemented on FPGA: discrimination

between highly energetic (boosted) q, g, W, Z, t initiated jets

t—-bW—-bqq Z—qq W-qq q/g background

3-prong jet 2-prong jet 2-prong jet no substructure
and/or mass ~ O

Reconstructed as one massive jet with substructure
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Physics case: jet tagging

0.08 1

multiplicity

0.06 1

AU
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60 80
Multiplicity

Input variables: several obervables known to have high discrimination
power from offline data analyses and published studies [*]

['] D. Guest at al. PhysRevD.94.112002, G. Kasieczka et al. JHEP05(2017)006, J. M. Butterworth et al. PhysRevl ett.100.242001, etc..
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.112002
https://link.springer.com/article/10.1007/JHEP05(2017)006
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.242001

Physics case: jet tagging

e \We train (on GPU) the five output multi-classifier on a sample of ~ 1M events with two
boosted WW/ZZ/tt/qa/gg anti-kr jets

¢ Fully connected neural network with 16 expert-level inputs:

- Relu activation function for intermediate layers 16 inputs
i C . 64 nodes
Softmax activation function for output layer sotivation: ReLU
10° - his4m| 32 nodes
] T 9tagger, AUC = 93.8% activation: ReLU
1 —— q tagger, AUC = 90.4%
| — w tagger, AUC = 94.6% 8
| —— ztagger, AUC = 93.9% 52 nodes
2 101 et activation: ReLU
E 5 outputs
3 activation: SoftMax
$ 102 \
better AUC = area under ROC curve
| (100% is perfect, 20% is random)
Y 02 04 06 0s 10

Signal Efficiency
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high level synthesis for machine learning

Implemented an user-friendly and automatic tool to develop and optimize FPGA
firmware design for DL inference:

e reads as input models trained with standard DL libraries

e uses Xilinx HLS software (accessible to non-expert, engineers resource not common in HEP)
e comes with implementation of common ingredients (layers, activation functions, binary NN ...)

PYTORCH K
eras :
TensorFlow Vivado™ HLS
PyTorch
Y h I 4 I Co-processing kernel ‘
compressed
model HLS. 5
conversion Custom firmware

Usual ML jf design
software workflow

tune configuration
precision
reuse/pipeline

https://hls-fpga-machine-learning.github.io/his4ml/

K B

Tensor

https://arxiv.org/abs/1804.06913
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https://arxiv.org/abs/1804.06913

Efficient NN design for FPGAs

FPGAs provide huge flexibility Constraints:
Performance depends on how well you Input bandwidth
take advantage of this FPGA resources

Latency

With hls4ml package we have studied/optimized the FPGA
design through: R\

e compression: reduce number of synapses or neurons ®

¢ quantization: reduces the precision of the calculations (inputs, @3@@3
- - o
weights, biases) @ﬁ»@@ §®@

¢ parallelization: tune how much to parallelize to make the
inference faster/slower versus FPGA resources
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ap_fixed<width,integer>

0101.1011101010

Efficient NN design: quantization

_—
integer fractional
width

Scan integer bits
Fractional bits fixed to 8

his4ml
1.1 =
O
D)
<C 1.0
O
D o9- :
O .
Q sl : [Full performance
05 - at 6 integer bits
0.7 .
N —>
D 0.6 1 i —a— g tagger
< —m— q tagger
<E 05 —=— W tagger
—8— 7z tagger
g —=— t tagger
0.4 I = I I I I I I
LL <10,2> <15,7> <20,12> <25,17> <30,22> <35,27> <40,32>
Fixed-point precision
23.01.2019

FPGA AUC / Expected AUC

1.1

1.0

0.9 1

0.8 1

0.7 A

0.6 1

0.5 1

0.4

e Quantify the performance of the classifier with the AUC

e Expected AUC = AUC achieved by 32-bit floating point
iInference of the neural network

Scan fractional bits
Integer bits fixed to 6

hisdml

: Full performance

rat 8 fractional bits
—

—=— g tagger
—=— ( tagger
—=— w tagger
—=— 7z tagger

—=— t tagger

<8,6> <13,6> <18,6> <23,6> <28,6> <33,6> <38,6>
Fixed-point precision
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Efficient NN design: compression

before pruning after pruning

: pruning
1eq hls4ml Reuse factor = 1, Kintex Ultrascale synapses
3.0 4 —®— Full model
Pruned model
2.5 1 pruning
neurons
2.0 A
815
o compression
 Number of DSPs available” e DSPs (used for multiplication) are often
" limiting resource
0.0 : : : . . , _
<8,6> <166>  <246»  <326>  <d06> - DSPs have a max size for input (e.g.
IXea-point precision ,
27x18 bits), so number of DSPs per
70% compression ~ 70% fewer DSPs multiplication changes with precision
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Parallelization: DSPs usage

Fully parallel
Each mult. used 1x

Each mult. used 2x

Each mult. used 3x

1e3 his4ml 3-layer pruned, Kintex Ultrascale
—&— Reuse Factor =1
6 1 =
—m— Reuse Factor = 2 Max DSP
= REUSE FACION = 3 mm o o o o o o o o o o o o o o e S —
. —&— Reuse Factor =4
—#— Reuse Factor =5 -8 —a—a—=
—a— Reuse Factor =6
4 -
o
a
3 -
i i i i i |
p /—I
L i L i L
T T T T T ./I—II'
1 e
O * I 1 1 1
<8,6> <16,6> <24,6> <32,6> <40,6>
Fixed-point precision
Reuse factor: how much to parallelize operations in a hidden layer
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Parallelization: Timing

Latency of layer m

Lm — Lmult + (R - 1) X 1 Imult + Lactiv

Longer latency

his4dml 3-layer pruned, Kintex Ultrascale

504 Reuse Factor = 1

—u— Reuse Factor = 2

—#— Reuse Factor = 3

—#— Reuse Factor =4

~Y

40 1 —=— Reuse Factor = 5 1 75 nS

—#— Reuse Factor = 6

N
(@)
1

=== | EQch mult. used 6Xx

=== | Each mult. used 3x

Latency (clock cycles)

R RN

~ 75 ns Fully parallel
Each mult. used 1x

More resources

10 -
0 I I I I 1
<8,6> <16,6> <24,6> <32,6> <40,6>
Fixed-point precision
23.01.2019
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The nis 4 ml package

Transiation Beusmmdll 0 thon keras-to-hls.py -c keras-config.yml

T

-=____________.. KerasJson: example-keras—-model-files/KERAS_1llayer.json
Inputs >

KerasH5: examp le-keras—-model-files/KERAS_1llayer_weights.h5
>
Keras K&

OQutputDir: my-hls-test
ProjectName: myproject ]
XilinxPart: xc7vx690tffg1927-2 COang

ClockPeriod: 5

I0Type: io_parallel # options: io_serial/io_parallel
ReuseFactor: 1

DefaultPrecision: ap_fixed<18,8>

I0Type: parallelize or serialize l

ReuseFactor: how much to parallelize ny_hls_test/:

build_prj.tcl

DefaultPrecision: inputs, weights, biases  firmware
myproject_test.cpp
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Extend his 4 ml with Intel support

“VIVADO

e Virtex V vs. Stratix V
1000 (based on simulation)
7 ) ‘ o ] K 900
intel) FPGA ‘gsggfwta‘:s .’;,,.5 ggzgnlab g 3-layer model
600 Quartus 14
500
e hls4ml supports Xilinx FPGAs and software 400
from beginning o
100
e Currently working to extend the package to 0 o
work with Intel/Altera Quartus HLS S
4 QUARTUS
- work in progress: technical complications 250000
slowed us down (software licenses and 200000
installation, Quartus HLS version @ CERN, ...)
150000
® First results encouraging (based on emulation £00000
and to be confirmed with actual deployment
50000

on card)

LUT
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The Iatency landscape @ LHC

1ns " IE 100 ms 1s

:' FPGAs l
‘ /' Q < computing farm Ofﬂme
/7 Q
%0, Yo
06, &

Focused on L1
trigger as first
application

— pure FPGAs

What can we do in < us on one FPGA?
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The latency Iandsoape @ LHC

1 ns 1 us

FPGASs

—

Use case @ LHC to accelerate slow
algorithms (ex: tracking) and ML
inference for HLT and offline analysis

Ongoing R&D on heterogeneous computing
on-site (QCERN) and on commercial clouds
(Microsoft Brainwave, Amazon Web Services,
Google TPU cloud)

— CPU+FPGA co-processor
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webservices™

SDAccel”

Environment

goes to the cloud  amaz

e Amazon Web Service provides co-processor

CPU+FPGA systems with Xilinx Virtex Ultrascale+ VU9P Mputs

PCI express

e Xilinx SDAccel development environment allows the ‘
development/running of connected FPGA kernels CPU FPGA
and CPU processes J

- any FPGA application defined in HLS, OpenCL, or C++ driver code oes
VHDL/Verilog can be accelerated -

e hl1s4dml project only needs to be wrapped to ‘
provide specific /0O ports configuration for SDAccel Post-processing
to interface properly

e Succesfully accelerated 1D CNN example project on Outputs 4
AWS F1: 10 four-channel inputs , 3 convolutional layers, 2

dense layers, 5 outputs — latency 71716 ns
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DL acceleration on Intel FPGAs @ CERN

e hls4ml developed from start to target very

low latency

¢ | atencies at HLT less strict allowing
iInference of much bigger networks
— different firmware project design wrt L1
trigger application

e No need to reinvent the wheael...

e Work in progress: accelerate DL inference

of predefined big networks through Intel

softwares such as OpenVino to benchmark

a specific physics case

Intel® Programmable Acceleration
Card with Intel Arria® 10 GX FPGA

Intel® Programmable MAC ID PROM FLASH USB
Acceleration Card with |

Intel® Arria® 10 GX FPGA

BMC [
. JTAG Hub
Intel CPLD -
QSFP+ 4x 10Gb < > DDR4 w/ECC
Networking Interface ax
ic Elements DDR4 w/E
A
7 Z
: 8x PCle*

_ perform studies on-site with Intel Arria 10 GX B =5 £ = 8 e ©© 2, © g

FPGA available at CERN

23.01.2019

Tﬂm.s Intel® Deep Learning Intel® Computer Movidius Neural Saffron
Deployment Toolkit Vision SDK Compute Stick  Technology*
Apache Microsoft o o

PRAMEWORKS 7%y o WM G o, SRS

MLz~ ssDL L theanos ®Y % rct L
lIBRARIEs ﬂ, Intel Dist Intel® Nervana™ Graph" ::3:_':\"::2: ASSOCIRtIE B =0,

puths
Intel° DAAL  Intel® MKL MKL-DNN Intel® MLSL Library = Memory Base 4

=l Il e = i e IEl (@D REALSENSE ;
gais (el o) =) o VD 2! H S
wonee BIEIEIEIEBa & 2 © e

Compute Memory and Storage Networking Visual Intelligence

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs 23



Summary

hils 4 ml

Introduced a new software/firmware package hls4ml

Automated translation of everyday machine learning inference into firmware in ~ minutes
Tunable configuration for optimization of your use case
First application is single FPGA, <1 us latency for L1 trigger
Supports Xilinx HLS but will be extended for Intel support with Quartus HLS

Explore also applications for acceleration with CPU+FPGA co-processors
for long latency trigger tasks

For more info

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913
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