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Why Quantum Machine Learning? 
ML & DL  applications multiply across all fields of science, society and industry

HEP is quickly catching up

Large data sets, HPC and cloud resources and (new) dedicated hardware drive the 
increase in complexity and range of applications 

Quantum approach to ML could solve more complicated problems… faster 

ML based tool can recognize complicated (hidden) patterns in data 

Quantum processors can produce statistical patterns that are computationally difficult to 
produce with classical approaches

à Could quantum processors recognize more complicated patterns in data?
2



3

A quantum speed-up* for ML?

Defining what quantum speed-up means is a complicated task
I/O,  data transfer and query complexity

Quantum states preparation, output retrieval and memory access

Computational
How many computing steps are needed to solve a problem 

Need to compare to the “best available” classical algorithm
For ML/DL the “best” classical algorithm is often not known 
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*Biamonte et al. arxiv: 1611.09347
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A quantum speed-up* for ML?

Quantum linear algebra is generally  faster than classical counterpart
Quantum Basic Linear Algebra subroutines  (qBLAS) exhibit exponential speedup 

Fourier transforms, eigenvectors and eigenvalues calculation, matrix multiplication and inversion 

Some standard ML techniques estimate the ground state of Hamiltonians 
Quantum approach may have an advantage

Quantum Boltzman Machines

ML algorithms have some tolerance to errors
Less affected by quantum instability of results

Specific quantum techniques can be exploited to bring further improvement
Amplitude amplification and quantum annealing 

Advantage from special purpose processors, such as quantum annealers
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*Biamonte et al. arxiv: 1611.09347
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Quantum ML

QML introduces quantum algorithms as part of a larger implementation 
Fully quantum or hybrid classical/quantum approaches 
Input data could be quantistic à ML for QC

How do we construct Quantum Neural Networks (QNN) ? 
Direct association between neurons and qubits
Encode information into amplitudes of a quantum state

How do we represent learning rules? 
Need association rule between NN activation patterns and pure quantum states

How do we address data loading?
Quantum state preparation
Direct access through qRAM ?

Possible to train on large datasets by only loading a small number of samples!
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... and ML for Quantum Computing
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Some Examples

Quantum Nearest Neighbors Clustering [Zhan] 

Quantum Principal Component Analysis [Lloyd]

Quantum Support Vector Machines [Rebentrost]

Quantum Boltzmann Machines [Amin]

Quantum Generative Models [Khoshaman]

Quantum implementation of a single Perceptron [Tacchino]
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Boltzman Machine

Perceptron
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Quantum Boltzmann Machines

Classical Boltzmann Machine consists of visible and 
hidden binary units za. 

Trained by adjusting weights so that the thermal statistics of 
the units Pz reproduces the statistics of the data

QBM replaces units with quantum spins and rewrite 
the Hamiltonian according to QFT formalism

Classical Ising Hamiltonian is augmented with a transverse 
field.
Training process is inspired to Gradient descent approach 
but it is not trivial

Trained QBM performed better on simple examples 
(~10 units) than classical counterpart
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[Amin]
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Represent m classical inputs and weights 
with N qubit: m=2N

Quantum system is initialized in his idle 
state
Apply two unitary transformations as a 
series of gates:

Prepare the quantum state
Apply weights

Store output in ancilla qubit
Apply activation function by measuring ancilla
An additional ancilla allows coherent
propagation of output to second perceptron 

N=2 perceptron tested on IBM Q-5
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Quantum implementation of a binary 
perceptron

[Tacchino]
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Some HEP related applications

Classification with Quantum Annealing on the D-Wave System (J-R. Vlimant)
https://indico.cern.ch/event/719844/contributions/3047935

Quantum Support Vector Machines (W. Guan)  -- next talk --
https://indico.cern.ch/event/719844/contributions/3197680

Quantum Variational AutoEncoder (Vinci, D-Wave)
https://indico.cern.ch/event/719844/contributions/3101600

Applications in Astrophysics (ORNL, FNAL) 
https://indico.cern.ch/event/719844/contributions/3105972

Machine Learning for Quantum Computing 
Deep reinforcement learning approach for fast qubit control (A. Ustyuzhanin)

https://indico.cern.ch/event/719844/contributions/3167608
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Quantum Support Vector Machine

QSVM is simulated on IBM Qiskit simulator
different numbers of qubits and events

Entanglement is used to encode relationships between features 

Apply PCA to input data features
Reduced from 45 to 8,10 or 20 (limited by number of qubits) 

Running full training with quantum simulators requires 
large computing resources

Memory increases with qubit, training events and complexity

Quantum SVM for ttH (H → 𝜸𝜸) classification
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More	in	W.	Guan’s	talk		
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Quantum Annealing for 
classification
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Transform binary classification into Ising Hamiltonian 
optimisation problem

Use boosting as learning rule and run adiabatic quantum 
optimisation

Build Weak/strong classifiers from <40 features for  H->γγ
signal/background separation

Define objective as a Quantum Unconstrained Binary 
Optimisation

Comparison to different classical methods (decision trees 
and DNN) and exact solution obtained from simulation

First application of D-Wave quantum annealing to HEP
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Quantum VAE

12

Quantum Variational Auto-Encoder
Example of a hybrid model

classical AutoEncoder: forward-propagation through 
DNN
quantum generative process: sampling from quantum 
Boltzmann distributions

Demonstrate QVAE can be trained with quantum 
annealers on non-trivial datasets

Can generate realistic samples!

Additional work to prove quantum advantage

trained with 128 qubit on D-Wave 2000Q

[Khoshaman]	
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Summary
Diversified research in Quantum Computing and Machine Learning 

R&D on quantum version of building blocks and models for Machine Learning 
Fully quantum or hybrid quantum/classical

A lot of work on ML for QC optimization and to quantum data

Many research areas 
Simulators require large computing resources to train  
Efficient encoding of NN models and learning strategies
Training data input (especially for Deep Learning applications)
Error mitigation 

First applications are promising
Tested on simulators but also on available hardware
Highlight scope and limitation and can provide important feedback to hardware R&D 

Quantum Annealing hardware can already solve realistic problems
We are interested in collaborating with research institutes and industry partners
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