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Machme learning and quantum computing

Machine Learning has become one of the most popular and
powerful techniques and tools for HEP data analysis

e Machine Learning: This is the field that gives computers “the ability
to learn without explicitly programming them”.

e Issues raised by ML

o Heavy CPU time is needed to train complex models
m  With the size of more data, the training time increases very
quickly
o May lead to local optimization, instead of global optimization
e Quantum computing
o A way of parallel execution of multiple processes using Qubits
o Can speed up certain types of problems effectively

o Itis possible that quantum computing can find a different, and
perhaps better, way to achieve global optimization.

Ref: “Global Optimization Inspired by Quantum Physics”, 10.1007/978-3-642-38703-6_41
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Our program with IBM Qiskit

Our Goal:
Perform LHC High Energy Physics analysis with
Quantum computing

Our preliminary program is to:

Employing SVM Quantum Variational (QSVM) method
for LHC High Energy Physics (HEP) analysis with the
environment of IBM Qiskit, for example ttH (H — yy),
Higgs coupling to two top quarks analysis.

* SVM = Support Vector Machine
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Our program with IBM Qiskit

Our preliminary program can be divided into three
parts with the Environment of IBM Qiskit:

Part 1. Our workflow for quantum machine learning
process.

Part 2. Employing the quantum method for LHC High
Energy Physics (HEP) analysis, with quantum
simulators, for example IBM Qiskit gasm simulator.

Part 3. Employing the quantum method for LHC High
Energy Physics (HEP) analysis, with IBM quantum
hardware, for example IBM Q Experience hardware.
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Part 1: Our Workflow for Quantum Machine Learning process

Input Events )l ttH: number of features(variables) = 45

PCA
(convert features to less features
based on available qubits)
—>

Feature Map
(map classical features to large

dimensional quantum features)

Quantum Machine Learning

FeatureMap: Each feature(variable) of input
event is encoded in the amplitude of one
separate qubit, but we have much more
features for an event than available qubits
(Number of qubits =5, 10, 20 for example)
PCA: Principal Component Analysis method
is used to convert/combine features to less
features to be able to be encoded into
guantum system.

(training and evaluating)

Support Vector Machine (SVM) quantum
variational, for example
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Part 2: Employing QSVM Variational with Q simulators

e Employing SVM Quantum Variational for LHC
HEP analysis
o For example, ttH (H — yy), Higgs coupling
to two top quarks analysis
o Exploring different feature maps and
entanglement methods

o Training and evaluating quantum ML
methods with different numbers of qubits,
different number of events, different
parameters and optimizers
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Part 2: Employing QSVM Variational with Q simulators
e With 5 qubits, we successfully finished training and testing with 200
events, 800 events and 3200 events with IBM Qiskit gasm simulator
(where ‘200’ events means 200 training events and 200 test events;
same for others).

ttH(H->yy) accuracy

QSVM
BDT

ttH(H->yy) auc

QSVM
BDT

e For QSVM, SPSA optimizer is used with 3000 iterations.

e BDT(Boosted Decision Tree) method is using XGBoost, a classical
method.

e BDT and QSVM are using exactly the same inputs for comparison.

o AUC: Area Under the ROC Curve(https://deveIopers.google.comlmachine-learninglcrash-courselclassification/roc-and-auc)-
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Part 2: Employing QSVM Variational with Q simulators

ROC Curve for 200 events

Background rejection

Background rejection
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Here are the ROC Curve plots
with QSVM and BDT, for 200
events, 800 events and 3200
events.
o QSVM and BDT has very
close ROC Curves.
o BDT ROC Curve is a little
better
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Part 2: Employing QSVM Variational with Q simulators

QSVM accuracy with different

number of events

-=~| ® Here are the accuracy and auc
L : between QSVM and BDT, with
S 200 events, 800 events and 3200
< events.

WL | o QSVM method got similar
Number of events accuracy as BDT
QSVM AUC with different .
Lo number of events o BDT gOt a litter better auc.
" R m  QSVM training is based on
o accuracy, not considering auc
%] currently.
co o Note: With less than 3k events, the
_ result varies when selecting different
P bunches of events. Here running the
00 %0 800 3200 same bunch of 200 or 800 events is
Numbergreyents just for method comparing, not real
analysis.
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Part 2: Employing QSVM Variational with Q simulators

e Quantum algorithm running flow, for example IBM Qiskit

Quantum algorithm KIS HILG'EE Quantum gasm running Quantum simulator/
circuits Quantum hardware

e Quantum algorithm can be prepared with python, with
circuits defined with python too.

e Compiling process will compile the python codes to a
dictionary with gasm codes(json serializable)

e Quantum simulator or quantum hardware will then
execute the gasm codes

* Qasm = Quantum assembly language

Wen Guan(University of Wisconsin-Madison) CERN Openlab workshop Jan 24,2019 ,



Part 2: Employing QSVM Variational with Q simulators
e To simulate 200 events with 5 qubits, 10 qubits and 20

qubits, here are the memory usage.

200 events 5 qubits 10 qubits
Compiling ELZIRY 48 G

20 qubits
21G

ST VEV T M 64 M 0.98 G

45G

e The python compiling process consumed much more memory

than the quantum simulator.

e Here the compiling process is using only one process

o If more than one compiling process, more memory will be

used.

e With more events, the compiling process will use more

LU A2 10 qubits 200 events
Compiling [EX:le

800 events
12.7G

SV E 1l 0.98G

3.1G
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Part 2: Employing QSVM Variational with Q simulators
e To simulate 200 events with 5 qubits, 10 qubits and 20

qubits, here are the time consumption.
200 events 5 qubits 10 qubits 20 qubits

Compiling time(seconds)

Simulation time(seconds) pA

e Quantum compiling time is also a big part of the total running time.

e Simulation CPU time increase exponentially O(2"), where n is the
number of qubits. That’s why it takes much longer time to simulate
20 qubits.

e Here the simulation process is using one process too, with gasm
simulator; The time is for one iteration

e With more events, the compiling time will increase too.
10 qubits 200 events 800 events

Compiling(seconds) ki

Simulation(seconds) p44 88
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Part 3 Employlng QSVM Varlatlonal with IBMQ hardwar

e Quantum hardware limitation
o Operations can reach 5MHz
0 with Quantum chips(see
Microwave electronics | R, , backup slides 22)
- LR e | Refrigerator to cool .
{iih qubits f0 10 - 15 o But Quantum input
) “ ) 1’-;-3»‘*?, m}gwnhaTlxture i

H B R . of Heand He preparation and output
= | —reading is not optimized yet

" ‘H! (Microwave electronics). As

=1 i a result, the total quantum

execution time is not

optimized.

Inside an IBM Q quantum
computing system

Tl H||| "
i, ]|||I| , ﬂlll v'“'

PCB with the qubit chip Ch|p W|th

at 15 mK protected from  superconducting

the environment by qubits and resonators
multiple shields

Quantum operation

“Quantum Computing at IBM”, lvano Tavernelli, Quantum Computing for Input preparation Output readout

High Energy Physics, CERN-Geneva, November 5-6,2018
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art 3: Employing QSVM Variational with IBMQ hardwar

e With the help of IBM Research Zurich, we
finished some training on the IBMQ hardware
with 100 training events and 100 test events,
5 qubits.

e Because of hardware access time and

timeout limitation, we only finished very few

iterations (for example 10,30,50) on the
hardware, instead of several thousands of
iterations on the simulators.
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Part 3: Employing QSVM Variational with IBMQ hardwar

o
o

Accuracy

o
N

e
(<)

1.0

0.8 -

0.6

AUC

0.2

0.0

QSVM accuracy with different
number of iterations

e
FS

== qsvm accuracy(hardware)
A bdt accuracy(no iteration limitation)

| “BDT - -

10 30 50
Number of iterations

QSVM auc with different
number of iterations

0.4 -

- X
-
L s
-
——
-
-
o P
P

’’’’’
————
—————
s

»~ ¢gsvm auc(hardware)
4 bdt auc(no iteration limitation)

10 30 50
Number of iterations

e Here are the accuracy and auc
plots with different number of
iterations.

o With increasing iterations,
the gsvm accuracy
increases slowly.

o With increasing iterations,
the gsvm auc increases very
fast.

e We need to run much more
iterations on the hardware if we
want to get similar results like
BDT.
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Part 3: Employing QSVM Variational with IBMQ hardwar

e Limitation with IBMQ hardware

o Only few iterations are tested currently
m Limited access time
e Long queue time

o Input preparation and output reading Is
not optimized
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Summary
Referring to Part 1 of this presentation:

e We introduced our workflow to employ
quantum methods for LHC High Energy
Physics analysis.
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Summary
Referring to Part 2 of this presentation:

e Using IBM Qiskit simulator, we have successfully employed

Quantum Support Vector Machine method for ttH (H — yy),
Higgs coupling to two top quarks analysis. We have
measured the accuracy and auc with different number of
events.

At current stage, with 5 qubits, we reached similar accuracy
of 0.79 and very close auc of 0.83, comparing with the
classical machine learning method(BDT) with accuracy 0.79
and auc 0.87. It also means work is needed to improve QSVM
algorithm.

We also measured the memory usage and execution time
between quantum compiling and quantum simulation. We
found that quantum compiling is a big part for both memory
usage and time consumption. With few qubits, quantum
compiling consumes much more memory and takes much
longer time than for the actual quantum simulation.
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Summary

Referring to Part 3 of this presentation:

e Using IBM Q Experience hardware, we have
successfully employed Quantum Support
Vector Machine method for ttH (H — yy), Higgs

coupling to two top quarks analysis.

e Again, the accuracy and auc is limited by the

iterations. But the accuracy and auc is
increasing as increasing iterations.
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BACKUP SLIDES
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Quantum measurement

Quantum state is a superposition which contains the

probabilities of possible positions.

When the final state is measured, they will only be found in

one of the possible positions.

o The quantum state ‘collapses’ to a classical state as a
result of making the measurement.

“No-cloning theorem”

o Impossible to create an identical copy of an arbitrary
unknown quantum state.

To obtain the probability of a possible position, some

number of shots are needed.
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Hardware Information

e Hardware status currently

o Classical computer:
m 3~4 GHz
m Millions of circuits with many cores, GPU

can have thousands of cores

o Quantum computer
m 200 ns per operation
m 5M Hz
m Not many parallel channels or threads
[
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https://quantumcomputing.stackexchange.com/questions/2402/how-many-operations-can-a-quantum-computer-perform-per-second
https://quantumcomputing.stackexchange.com/questions/2402/how-many-operations-can-a-quantum-computer-perform-per-second
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How to use quantum computer

e How to use quantum computers
a. Convert classical features to be able to be
processed to quantum computers
m Feature map
b. Using quantum algorithms to process the data
m Algorithms developed based on quantum
computers, such as Quantum Support Vector

Machine, Quantum annealing, Grover Search
and so on

Wen Guan(University of Wisconsin-Madison) CERN Openlab workshop Jan 24, 2019
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Tensor product feature map

e Quantum feature map: Map bit info non-linearly to
quantum ‘feature Hilbert space’
o Tensor product encoding
m Each feature(variable) of input event is encoded in
the amplitude of one separate qubit
m All features of one event is the tensor product of
corresponding qubits
o Entanglement between features
m Without entanglement
m Between next one feature(linear entanglement)
m Between all of the next features(full
entanglement)
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Other feature map methods

e Basic encoding
© One bit maps to one qubit
o For example, two bits “01” maps to two qubits
“101>"
e Amplitude encoding
© N classical features maps to log,N qubits
o X= (xo, - XN-1)’ N=2"
o |l@> =2 X.* |i> (qubit“|i>”isthe i'th
computational basis state)
o Looking whether it’s possible and how to do it

Wen Guan(University of Wisconsin-Madison) CERN Openlab workshop
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Support Vector Machine

e Support Vector Machine ( SVM )
o a supervised ML that draws a

fx w, b) = sign(w x + b)
w x + b>0

decision boundary between
two classes to classify data

w x + b<O

points

© Origina"y it's constructed as a Ref: Support Vector Machine and Its
linear classifier Application(Mingyue Tan, 2004)

o Maximize the distance from
the line or hyperplane to the
nearest data point on each

Ref: Support vector machine(Wikipedia)

side
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SVM kernel function

e Kernel function R
o Often the sets of data points B
are not linearly separable

o Map data points to a much
higher dimensional space

which presumably making the

Ref: Support vector

separation easier machine(Wikipedia)

Performance depends on different kernel functions
Limitation to successful solutions when feature
space becomes large

m Computationally expensive to estimate the kernel

Wen Guan(University of Wisconsin-Madison) CERN Openlab workshop Jan 24, 2019
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Quantum SVM

e Quantum SVM
o Take advantage of the large dimensionality of
qguantum Hilbert space
m Non-linearly maps input data into a very large
dimensional feature Hilbert space
m Exploiting an exponentially large quantum state
space
o Take advantage of the quantum speedup
o Estimate the kernel and optimize the classifier
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