

Al on the machine level in industrial automation Dr. Ingo Thon

© Siemens AG 2019

siemens.com

Many major breakthroughs in Artificial Intelligence (AI) have occurred since 2011, and will have significant impact on our business

Creating machines that perform functions that require intelligence when performed by people (Kurzweil, 1990)

Before 2011

Definition of Al

1946: Zuse's Z3, first programmable electronic computer

1997: IBM2005: Honda'sDeep Bluehumanoiddefeats world'srobot Asimochesscomes to lifechampionKasparov

2011: Watson**2**wins Jeopardy!Aagainst mostisuccessfulacontestantsa

2014: Alexa,20Amazon'sbeaintelligentSeassistantmadebuts

2016: AlphaGo beats Lee Sedol in a Go match

Expected by 2030+

SIEMENS

Ingenuity for life

~2020: Allover virtual personal assistants as interface for consumers

Allval autonomously driving cars ts as for become market-ready **20xx:** Robots may build robot "children" on their own

Significant activities

IT players start to move into industrial areas

Industrial automation and how it changes towards enabling AI

Definition of Industrial Automation Industrial automation is the use of control systems, for handling different processes and machineries in an industry to replace a human being

History

1958: SIEMENS replaces simple switches and relays by transistors

tape

1973: SPS S3

Programmingd

evice, punched

1979: Programming with screens and graphical programming

2017: Freely programmable cores

2018: release

2018: release of TM NPU

Expected by 2018+

~2025: Robots which do not need to be programmed

~ 2025: Flexible lot size one production

Internet of Things – Today

Today's IoT approaches largely offload compute-intensive work to the cloud, which is hardly feasible for intelligent things.

NanoBox can only send data with approx. 1Hz frequency ⇒ High roundtrip latencies, not suitable for control or safety-critical applications

Data and Services Move from the Cloud to the Edge

The large amount of data generated by intelligent things requires to process the data at the edge (devices, gateways, etc.).

Al on the Edge and Distributed Al Motivation

Enabling Industrial Edge & Field Devices with Artificial Intelligence and Data Analytics Capabilities

The need for local Intelligence on Devices

Responsiveness

Work on local data, perform low-latency decision making.

Security and Privacy

No need to extract sensitive data from the field, or expose IP.

Autonomy and efficiency

No dependency on cloud, no transfer of large amounts of raw data.

Reduced costs

Resource sharing, leverage existing computing devices and platforms.

Real-Time Video Analytics for Intelligent Traffic Systems

SIEMENS Ingenuity for life

Vehicle detection, Tracking & Counting

- **~** Detect vehicles and pedestrians in the field **Use Case** of view of the camera
 - Track vehicles for accurate counting and
- speed estimation
 - Improve turning movement count based on type

Density Estimation & Statistics

- 2 Real-time estimation of road occupancy (density)
- Case Statistical reports with time graphs of hourly, Use daily, weekly and monthly variation of traffic density

[July'18]

Anomaly detection

- 3 Detection of traffic violation Case (e.g: helmet detection)
- Use Accident detection & localization. Notify medical and law-enforcement authorities

Deployment of Machine Learning models to Protection Relays

Siemens Innovation Machine learning & distributed analytics – intelligent grid controllers

Challenge

- Reliably classifying and locating faults in power grids

SIEMENS

Ingenuity for life

- Conventional methods at ~80% reliability

Solution

- Machine learning applied to ~70,000 fault events
- Resulting optimized algorithms embedded in SIPROTEC[™] protection relays
- Real-time streaming and interpretation of grid data

Outcome

- Considerably improved reliability of locating faults
- Faster recovery times, reduced maintenance cost
- Enabling large-scale integration of solar & wind

Benefit for Siemens

 Enhancing the electrification & automation portfolio – expanding leadership

Artificial Intelligence in Factory Automation Machine Learning on PLCs

Motivation

 Todays control code on PLCs does not adapt during run time.

Key questions

- Can control programs adapt to changes in the environment automatically?
- Can Machine Learning algorithms run on PLCs?

Proof of concept

AI Approach:

 Online Learning on the PLC to auto-calibrate a robot-camera system

AI Training:

 Constantly updating the parameters of a control program on PLCs

AI Execution:

 Run the program on a PLC

- Yes it worked!
- PLC code can adapt, for example, to camera position changes

Future Potential

 Reducing programming efforts and making control logic more robust towards changes in the environment

Artificial Intelligence in Factory Automation Executing AI on PLCs

Motivation

 Today control code on automation controllers is programmed manually

Key questions

Is it possible to:

- Generate control logic w/o human input just via high end Machine Learning?
- Deploy that on a standard PLC?

Proof of concept

AI Approach:

- Learn from simulation (Pong computer game)
 AI Training:
- Developing of Deep Learning Network w/o any pre-knowledge or engineering

AI Execution:

S7-1518

 Deploy Deep Learning model to a

Results

- Yes it worked!
- PLC Code created from observations w/o any programming
- Two S7 PLCs play against each other

Future Potential

 Reducing programming efforts towards zero engineering

Artificial Intelligence in SIMATIC Benefits of AI using an example

Properties

- X
- Processing of data via programmed image capture system
- Each object to be recognized has to be precisely defined (deviations = rejection)
- Time-consuming programming for new objects

Properties

- ×
- Processing of input data via neural networks
- Higher availability through detection of complex patterns
- Easier handling also of unknown objects

Industrial Edge

Industrial Edge combines local and high-performance data processing directly within the automation system

Machine Learning Lifecycle

Feedback loop allows model deployment on the devices and continuous refinement to bridge the gap between IT and OT.

Our future portfolio will enable AI across all levels of Totally Integrated Automation - Best fit to customers needs

Artificial Intelligence in SIMATIC...

... realized via a new module for the S7-1500 / ET 200MP

S7-1500 TM NPU (Neural Processing Unit) 9 M M Neural Network 1 📀 🗞 😐 😳 CPU 87-1515-2 P MOVIDIUS AI Work-PORTA bench **PLC-Data** Sensors (Video, Sound, ...)

Features / Functions

- Integrated high performance AI-Chip
- Processing of input data (camera, sound, CPU) via trained neural networks
- Connection of sensors via USB and Ethernet interface
- Engineering and handling via TIA Portal and AI Workbench

Unrestricted © Siemens AG 2019

Artificial Intelligence in SIMATIC S7-1500/ET 200MP Application examples

Robotics:

Handling of **arbitrary and unknown** workpieces/ objects recorded via camera

A P

(Visual) quality control: Application of human "expert knowledge" about the perfect consistence, color, texture etc.

- of a product (chocolate mass, metal, ...)
- a process (flame color in a furnace)

Detection of process anomalies

Condition monitoring (e.g. recording the sound profiles in paper plants)

Functionality using the example of the SPS fair model Step 1: Object recognition & determination of possible grip points

Functionality using the example of the SPS fair model Step 2: Calculation of the best grip variant

Thank you for your attention

Ingo Thon ingo.thon@siemens.com

Senior Key Expert Machine Learning

Subject to changes and errors. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.

All product designations, product names, etc. may contain trademarks or other rights of Siemens AG, its affiliated companies or third parties. Their unauthorized use may infringe the rights of the respective owner.

Artificial Intelligence in SIMATIC Technical concept

Artificial Intelligence in SIMATIC Applicability: Image processing

Artificial Intelligence in SIMATIC Applicability: PLC data analysis

