&

’) BIOLOGY DYNAMICS MODELLER

CERN openlab Technical Workshop

=¥ CERN

1, openlab

Fons Rademakers
Lukas Breitwieser

Newcastle
University

ETH:zurich

Help Life Scientists Understand
(Patho)physiological Processes

Kaiser; University of Newcastle, UK; www.dynamic-connectome.org

Molecule

Macromolecule

Organism

Organ

Macromolecule

Molecule

Atom 3

Agent-based simulations

Simulation object = Agent

Agent-based simulations

Simulation object = Agent

Agent-based simulations

Simulation object = Agent
Local region

® 2e2e

Collision

BioDynaMo Designh Goals

BioDynaMo Designh Goals

e Modular system that supports
different specialities

BioDynaMo Designh Goals

e Modular system that supports
different specialities

e Support large-scale biological
simulations

BioDynaMo Designh Goals

e Modular system that supports
different specialities

e Support large-scale biological
simulations

e Hide complexity of distributed
computing

BioDynaMo Designh Goals

Modular system that supports
different specialities

Support large-scale biological
simulations

Hide complexity of distributed
computing

Promote reproducibility of results

Large-scale Simulations

The cerebral cortex consists of ~16 billion neurons

e Scale up

m Efficient use of modern hardware
(multi-core CPUs and accelerators)

e Scale out

m Distributed runtime

Preliminary Performance Results

Cell grow and divide Soma clustering
Speedup: 25x Speed-up: 31x

Runtime [ms]
= N

[=)] | 2]
g g [=] [=] [=]
(=] (=] (=]
S =}

Runtime [ms]

Preliminary Performance
Results

AOS vs SOA memory layout

cell grow and divide soma clustering

70 4 —+— AQOS speed-up —— AOS speed-up
—— SOA speed-up —+— SOA speed-up
—— Ideal speed-up 70 1 —— Ideal speed-up
60
60
m -
m 4
2 a0] 2
3 % 40
))
(=N (=N
w 30 4 w
30 -
20 A 20 4
10 A 10 4
04 04
T T T T T T T T T T T T T T T T
0 10 20 30 40 50 60 70O 80 90 100 110 120 130 140 0 10 20 30 40 530 60 7F0 80 90 100 110 120 130 140

Number of threads Number of threads

Mechanical Interactions on
GPU or FPGA

Baseline (serial) 2582
Baseline (20 threads)
UG-method (serial)
UG-metheod (20 threads)
GPU First Version

GPU Improvement 1
GPU Improvement I1
GPU Improvement III
GPU Improvement IV
FPGA First Versian

FPGA Improvement I
FPGA Improvement II
FPGA Improvement II

3010
2990

w0t w108
Execution time per timestep (ms)

Baseline (20 threads)
UG-methed (serial}
UG-method (20 threads)
GPU First Version

GPU Improvement I
GPLU Improvement I1
GPU Improvement I11 134
GPU Improvement IV
FPGA First Version
FPGA Improvement I
FFGA Improvement 1T
FPGA Improvement I11

10° 101 102 10%
Speedup

Retinal Mosaics Use Case

—-05

—-1.0e+00

Research performed by Jean de Montigny at the University of
Newcastle, UK

Current Status

Modular simulation engine

Fully parallelized with OpenMP
GPU & FPGA implementation for
mechanical interactions using CUDA
and OpenCL

First version of distributed runtime
based on the framework Ray

ROQOT I/0 for storage of simulation
results and snapshots
Visualization using ParaView and
ROQOT Eve

OpenMP
’l’ ParaView

11

Future Work:
Distributed Runtime

13

‘lllll'lllll'll-ll'lll

Domain-Decomposition

Hauri, Andreas. Self-construction in the context of cortical growth . Diss. 2013.

Distributed Runtime

Frontend

Distributed Runtime

Frontend

Distributed Runtime

Frontend

Distributed Runtime

Frontend

Frontend

Distributed Runtime

14

Prototype based on Ray

4 riSeIOb S PUBLICATIONS 5 AC ICS NEWS EVENTS

U Berkeley

Ray: A Distributed Framework for Emerging Al Applications

ROBERT MISHIHARA / 8 DECEMBER 20, 2017 /

The next generation of Al applications will continuously interact with the environment and learn from these interactions. These applications impose new and demanding systems
requirements, both in terms of performance and flexibility. In this paper, we consider these requirements and present Ray---a distributed system to address them. Ray implements
a dynamic task graph computation model that supports both the task-parallel and the actor programming models. To meet the performance requirements of Al applications, we
propose an architecture that logically centralizes the system's control state using a sharded storage system and a novel bottom-up distributed scheduler. In our experiments, we
demonstrate sub-millisecond remote task latencies and linear throughput scaling beyond 1.8 million tasks per second. We empirically validate that Ray speeds up challenging
benchmarks and serves as both a natural and performant fit for an emerging class of reinforcement learning applications and algorithms.

Published On:

Link: hitps:

Authors: Philipp M

developed by our summer student Nam Nguyen

15

Challenges

e Alleviate the overheads of distributed execution
m e.g. (De)serialization
e Performance issues in the cloud

= |nferior network performance compared to
supercomputers

= | oad balancing (heterogeneous computing, runtime
variance)

e Fault-tolerance

= | ong running simulations with large number of nodes
Will checkpointing be enough?

16

£ 1ot

QUESTIONS?

lukas.breitwieser@cern.ch

17

