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Agent-based simulations
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BioDynaMo Designh Goals

Modular system that supports
different specialities

Support large-scale biological
simulations

Hide complexity of distributed
computing

Promote reproducibility of results



Large-scale Simulations

The cerebral cortex consists of ~16 billion neurons

e Scale up

m Efficient use of modern hardware
(multi-core CPUs and accelerators)

e Scale out

m Distributed runtime



Preliminary Performance Results

Cell grow and divide Soma clustering
Speedup: 25x Speed-up: 31x
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Preliminary Performance
Results

AOS vs SOA memory layout

cell grow and divide soma clustering
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Mechanical Interactions on
GPU or FPGA

Baseline (serial) 2582
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Retinal Mosaics Use Case
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Research performed by Jean de Montigny at the University of
Newcastle, UK




Current Status

Modular simulation engine

Fully parallelized with OpenMP
GPU & FPGA implementation for
mechanical interactions using CUDA
and OpenCL

First version of distributed runtime
based on the framework Ray

ROQOT I/0 for storage of simulation
results and snapshots
Visualization using ParaView and
ROQOT Eve

OpenMP
’l’ ParaView
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Future Work:
Distributed Runtime



13

‘lllll'lllll'll-ll'lll

Domain-Decomposition

Hauri, Andreas. Self-construction in the context of cortical growth . Diss. 2013.



Distributed Runtime
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Distributed Runtime
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Prototype based on Ray
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Ray: A Distributed Framework for Emerging Al Applications

# ROBERT MISHIHARA / 8 DECEMBER 20, 2017 /

The next generation of Al applications will continuously interact with the environment and learn from these interactions. These applications impose new and demanding systems
requirements, both in terms of performance and flexibility. In this paper, we consider these requirements and present Ray---a distributed system to address them. Ray implements
a dynamic task graph computation model that supports both the task-parallel and the actor programming models. To meet the performance requirements of Al applications, we
propose an architecture that logically centralizes the system's control state using a sharded storage system and a novel bottom-up distributed scheduler. In our experiments, we
demonstrate sub-millisecond remote task latencies and linear throughput scaling beyond 1.8 million tasks per second. We empirically validate that Ray speeds up challenging
benchmarks and serves as both a natural and performant fit for an emerging class of reinforcement learning applications and algorithms.

Published On:

Link: hitps:

Authors: Philipp M

developed by our summer student Nam Nguyen
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Challenges

e Alleviate the overheads of distributed execution
m e.g. (De)serialization
e Performance issues in the cloud

= |nferior network performance compared to
supercomputers

= | oad balancing (heterogeneous computing, runtime
variance)

e Fault-tolerance

= | ong running simulations with large number of nodes
Will checkpointing be enough?
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lukas.breitwieser@cern.ch
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