

Smart Platforms for Science

CERN openlab Technical Workshop 2019

Taghi Aliyev

24/01/2019

Background and Motivation

Natural Language Processing Tools

- A lot of replicative work in any scientific field
 - Non-reproducible research
 - Many different data structures and conventions --> Need for parsers...
- High barriers to enter the research fields
- Lack of common ground, all-in-one environments
- Sparked out off discussion with the members of Medical Community
 - Genomics Analysis Experts, Professors in Bio-Informatics, personal experiences

CERN Tin CERN

Introduction to the Platform

- Large-scale collaborative research platform
- Main focus on ease-of-use, reproducibility of research
- Use of Machine Learning for Narrative interfaces
 - Information Retrieval
 - Natural Language Processing (Chatbots)
- Provide and host in-house solutions and projects

Chatbots and Information Retrieval

- Lower the barriers for junior researchers
- Enhance the way research is done for everyone
- Chatbots as Personal Assistants
- Information Retrieval and Question Answering:

Models and Frameworks

- Models being tested:
 - QANet
 - DSSM (Deep Semantic Similarity Models)
 - Recently released: BERT (Bidirectional Encoder Representations from Transformers)
- Framework to host the models:
 - RASA

Models – QANet; Combining local conv with global self-attention

Taghi Aliyev, IBM Meeting

Model – DSSM; Deep Semantic Similarity Model

Learning: maximize the similarity between X (source) and Y (target)

Representation: use DNN to extract abstract semantic representations

Convolutional and Max-pooling layer: identify key words/concepts in X and Y

Word hashing: use sub-word unit (e.g., letter *n*-gram) as raw input to handle very large vocabulary

Taghi Aliyev, IBM Meeting

Hosting Tool – RASA; Open Source tools for contextual AI Assistants

• Python-based tool

CERN

🚅 openlab

- Allows for custom actions
 - Easing the integration of pre-trained models

Holding the models accountable and explainability

- Understanding the reasoning and decision-making is crucial
- Not very straight-forward for deep neural networks
- More relevant for a conversational bot
 - Holding the model responsible when leads to accidents
 - Ability to back trace the effects and the outcome
- Initial test case:
 - TwinsUK with KCL for feature extraction in heritability studies
 - Pre-trained CNN

CERN CERN Openlab

Deconvolutional Neural Networks

CERN CERN Openlab

Deconvolution

Some initial results

Deconvolution

Perturbation on input image and correlation

- Results of initial tests on 2 twins
 - With 2 different ways to compute correlations

Results on 2 twins

Deconvolution

Where do we stand now?

- Last touches for the convolutional neural network
- Next: Generalization to different network architypes
 - Especially for the textual cases
- Not an investigated problem
 - Even more true in Medical Informatics

Application Areas and Use Cases

- Public/Social
 - GENIAL, Geneva Responsive City Camp
- Research
 - SQuAD 2.0 Challenge
 - Vignette extraction and analysis
- Education
 - Training tools/Personal Assistant
 - Still looking for partners and use cases

CERN CERN Openlab

Conclusion

- Deconvolution:
 - An interesting idea that can incorporated to the platform to provide insights
- Conversational bots:
 - BERT proposes a generic and interesting approach
 - DSSM and QANet are proven to be of decent quality
 - Improvements are still required
- Use Cases:
 - GENIAL case being presented upcoming Monday at AMLD
 - Has interest of Canton of Geneva and a dedicated testing group

