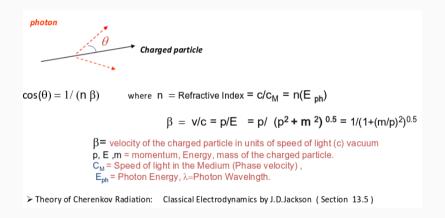
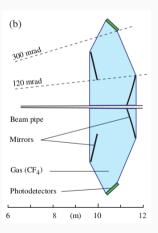
IBM Evaluation of power architectures for machine learning

Daniel Hugo Cámpora Pérez dcampora@cern.ch January 23rd, 2019

Universidad de Sevilla CERN



The RICH reconstruction


Problem formulation

Cherenkov radiation principle

RICH detectors in LHCb

In LHCb, we have two RICH detectors. Below is a schematic XZ view of RICH1:

Analytical solution

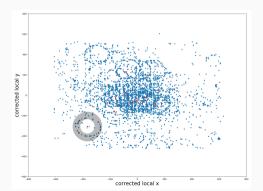
The analytical solution consists in *creating photons*, ie. associations of detected pixels in the HPDs / MaPMTs with their originating track segments through the Rich detector.

Once this association is found, a likelihood minimisation algorithm is run in order to find the most likely candidate for each particle.

- Photon creation, heavily involving ray tracing
- Likelihood minimisation

Analytical solution - Ray tracing

The creation of the photons involves a ray tracing algorithm from each segment to the candidate pixels. In turn, this means solving the quartic equation:


$$4e^{2}d^{2}\sin^{4}\beta - 4e^{2}d_{y}R\sin^{3}\beta + \left(d_{y}^{2}R^{2} + (e + d_{x})^{2}R^{2} - 4e^{2}d^{2}\right)\sin^{2}\beta + 2ed_{y}(e - d_{x})R\sin\beta + (e^{2} - R^{2})d_{y}^{2} = 0.$$
(3)

This can be solved, using for example a routine in the CERN library [6], and gives four solutions for $\sin \beta$, two complex and two real. Of the real solutions one is the "backward" reflection (that would exist if the mirror were a complete sphere, shown as M' in Fig. 3); the other is the desired solution, and can be selected from knowledge of the RICH detector geometry. The value of $\cos \beta$ can then be extracted using Eq. 2, and the coordinates of the reflection point M determined.

Bringing ML into the fray

Alternatively, we are studying whether it is possible to transform the problem into a classification problem from an image into a particle ID (one of *pion, muon, electron, kaon, proton, deuteron*):

- Each track is extrapolated onto the detector plane (red dots)
- A corona shape is fed onto a Convolutional Neural Network to identify the particle

Motivation

If we observe the surrounding area of a single track extrapolation and convert it to polars, we end up with the figures below:

Figure 1: Left: Pion. Right: Electron.

Exploring possibilities

We are exploring adding several features to the system:

- Position of the track (x, y)
- Momentum of the track
- Identify hits in several coronas

with various CNN designs:

```
[CONV2D 32] x2
POOL
[CONV2D 64] x2
POOL
[CONV2D 128] x2
POOL
FC 512
FC 128
FC 6 (output)
```

Trainable params: 4M

Ongoing research

We are mainly interested in distinguishing heavy particles from light particles, where early results report about 90% identification efficiency. This is promising, but still a work in progress.

Predictions (%tot)	heavy	light	Efficiency (%)
heavy light	+	7.482 71.815	70.742 96.489
Purity (%)	+ 87.377 +	90.565	

Predictions (%tot)	1			kaon	muon	pion	proton	1	Efficiency	(%)
	-+-							-+-		
deuteron		0.000	0.000	0.013	0.000	0.047	0.008	-	0.000	
electron		0.000	0.003	0.080	0.000	1.942	0.015		0.163	
kaon		0.000	0.000	10.822	0.000	5.717	0.262		64.415	
muon		0.000	0.000	0.020	0.000	0.495	0.002		0.000	
pion		0.000	0.000	1.210	0.000	70.348	0.313		97.880	
proton	I	0.000	0.000	1.970	0.000	3.580	3.153	I	36.231	
Purity (%)	İ	0.000	100.000	76.668	0.000	85.656	84.014	İ		
ID eff (%)	I	K->K,Pr,	D: 65.972	2 pi->e,m	pi : 97.	880				