Storage evolution at CERN

Alberto Pace, alberto.pace@cern.ch
Roles Storage Services

• Three main roles
 • Storage (store the data)
 • Distribution (ensure that data is accessible)
 • Preservation (ensure that data is not lost)
“Why” data management?

• Data Management solves the following problems
 • Data reliability
 • Access control
 • Data distribution
 • Data archives, history, long term preservation
• In general:
 • Empower the implementation of a workflow for data processing
CERN Computing Infrastructure

CPUs Network Databases Storage Infrastructure
CERN Computing Infrastructure

January 2019

CPUs
- Servers (Meyrin): 11.5 K
- Cores (Meyrin): 174.3 K
- Servers (Wigner): 3.5 K
- Cores (Wigner): 56.0 K

Network
- Disks (Meyrin): 61.9 K
- Tape Drives: 104
- Disks (Wigner): 29.7 K
- Tape Cartridges: 33.0 K
- Switches: 4.1 K
- Wifi Points: 912

Databases

Storage

Infrastructure

[View MONIT-Grafana](http://monit-grafana-open.cern.ch/d/000000884/it-overview?orgId=16)
CERN Computing Infrastructure
Tue Nov 27th, 2018 at 11:00
Can we make it simple?

- A simple storage model: all data into the same container
 - Uniform, simple, easy to manage, no need to move data
 - Can provide sufficient level of performance and reliability

For large repositories, it is too simplistic!

Why?
Why multiple pools and quality?

- Derived data used for analysis and accessed by thousands of nodes
 - Need high performance, Low cost, minimal reliability (derived data can be recalculated)
- Raw data that need to be analyzed
 - Need high performance, High reliability, can be expensive (small sizes)
- Raw data that has been analyzed and archived
 - Must be low cost (huge volumes), High reliability (must be preserved), performance not necessary
So, ... what is data management?

- Examples from LHC experiment data models

- Two building blocks to empower data processing
 - Data pools with different quality of services
 - Tools for data transfer between pools
Data pools

- Different quality of services
 - Three parameters: (Performance, Reliability, Cost)
 - You can have two but not three
But the balance is not as simple

- Many ways to split (performance, reliability, cost)
 - Performance has many sub-parameters
 - Cost has many sub-parameters
 - Reliability has many sub-parameters
And reality is complicated

- Key requirements: Simple, Scalable, Consistent, Reliable, Available, Manageable, Flexible, Performing, Cheap, Secure.
- Aiming for “à la carte” services (storage pools) with on-demand “quality of service”
Where are we heading?

- Software solutions + Cheap hardware

<table>
<thead>
<tr>
<th>Expensive</th>
<th>Tapes</th>
<th>Disks</th>
<th>Slow</th>
<th>Unreliable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash, Solid State Disks</td>
<td></td>
<td>Mirrored disks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Software defined service + cheap hardware
Present Strategy, Future Evolution

- **Software**
 - Software is the most strategic component
 - When you are 'big', using proprietary software is extremely risky
 - It is important that software has a fixed-cost only

- **Hardware**
 - If the "software" problem is correctly handled, the Hardware + Energy is where variable-costs are concentrated

- **Manpower cost**
 - Ensure that the 'marginal' cost is as small as possible, maximise automation

- **With this approach …**
 - the cost of adding a PB of storage is limited to the cost of a PB of HW
 - the cost of operating an additional PB of storage is limited to the cost of the required energy and hardware amortisation
Software

• For the most strategic component, shortcuts are possible but risky

• Example of a heading-for-a-disaster strategy:
 1. Look for the best commercial software available …
 2. Negotiate an outstanding discount, which includes unlimited usage for xx years …
 • Easily done when you are a 'big' customer. You can even get it for free.
 3. Deploy rapidly, grow rapidly, … for xx years.
 4. Pay back all your past savings (and more) at the end of the xx years when you will attempt to renegotiate the contract …

• Does it make sense? Yes, if you have implemented a clear and tested exit strategy from the beginning
Software strategy

• Three safe scenarios for successful software strategy:
 • Use only commercial software that implements well understood functionalities on well established standard interfaces. There must be implementations from multiple independent vendors with demonstrated interoperability.
 • License cost should be fixed (volume and usage independent) and should not expire.
 • Must have the perpetual right to continue to use the 'old' software in case we would not need or accept or afford to buy renewed version of the software.
 • Use Open Source software that has no license cost associated. Fund the necessary software development costs through separated software maintenance or development contracts.
 • Develop core software components ourselves. In open source.
 • All three approaches are successfully being applied for the storage service strategy at CERN.
Hardware

• In the year 2000, all CERN data (from the previous accelerator - LEP) were filling the datacentre (100 TB)

• Today, all this data can be stored in a drawer of my office

• Will I be able to store all current CERN data in my drawer in 10 years?
Important digression

• a MicroSD card has a volume of $V_{SD} = 15 \times 11 \times 0.8 = 132 \text{ mm}^3$
 • Available with 512 GB or (soon) 1 TB size
• a 3.5" HDD is $V_{HDD} = 101 \times 146 \times 25.4 = 374'548.4 \text{ mm}^3$
• You can pack many microsd cards in the volume of one hard disk. What storage would you have ?
 • $V_{HDD} / V_{SD} = 2837$ cards. Capacity = 1.4 PB or (soon) 2.8 PB.
 • 100 PB would require 35 HDD, which fit in my drawer.
 • 100 PB can already fit my drawer today using microsd cards
• Will it be slow ? Unreliable ?
 • With striping and erasure encoding you can expect these new storage devices to be arbitrarily reliable (unbreakable) and arbitrarily fast: Always matching the performance of the external interface (Eg: SATA 6 GB/s)
• Media Cost ?
 • Today 250 - 350 K$/PB using microsd. 20 - 30 K$/PB using HDD. 5 - 10 K$/PB using Tapes.
 • So the only question left is :
 • in 10 years, will flash memory match HDD cost ? Will it match tape cost ?
• Intrinsic advantage
 • No power consumption when idle
 • Significant higher performance and reliability
Strategy - Conclusion

- LHC next physics run is expected to deliver 10x today data rates and requires 10x data volumes.
- Must keep fixed cost for software.
 - No license cost proportional to data volumes, or number of nodes, or cores, or disk, or data transferred.
 - (this is why CERN has a Storage group)
- Maximise economy of scale on hardware
 - For storage, this means minimize the cost per PB
 - Many vendors are heavily investing in flash memory to deliver extremely fast storage product that outperform the existing ones at higher cost (bad !)
 - However, that there is a market for low cost, high capacity, flash storage
 - Reliability and performance can be obtained with software
 - Current strategy is to seek for the cheapest possible storage media.