‘W

Projects

o ///pe'sp g

Status of the DEEP-EST Project and
Outlook

Viktor Khristenko (CERN)

—— F
* *

- * *

* *

DEEP-EST Project: Objectives

* In short -> Build Modular Supercomputing Architecture (MSA)
* Build a fully working, energy efficient prototype of the MSA
* Support HPC and HPDA convergence

* Extend a proven resource management and scheduling system to
fully support the MSA

* Enhance and optimize the programming environment based on
MPI and OpenMP. Add support for data analytics and machine
learning frameworks

* Validate the full hardware / software stack with relevant HPC /
HPDA applications

-

.
Template for the DEEP projects

IDEEP

Projects

Coordinator: Juelich Supercomputing Center
16 Partners

8 EU countries

JSC, Intel, BADW-LRZ, BSC, ETH-Aurora, Megware,
UHEI, EXTOLL, UEDIN, FHG-ITWM, KULeuven,
ASTRON, NCSA, NMBU, Uol, CERN

The DEEP-EST Project: Applications ///DEEP

Projects

e 6 HPC and/or HPDA applications selected to drive the co-design process

* Used to evaluate hardware and software technologies developed within
DEEP-EST

IC

* HEP, Earth Science, Space Weather, Molecular Dynam
Neuroscience, Radio Astronomy e

iPiIC3D

HPDBSCAN
IS\

Template for the DEEP projects

The DEEP-EST Project: Architecture LIDEEP

Projects

EXTREME
SCALE
BOOSTER

CLUSTER
MODULE

+ Network Attached Memory

NETWORK + Global Collective Engine

FEDERATION

DATA
ANALYTICS
MODULE

SCALABLE
STORAGE

Template for the DEEP projects

The DEEP-EST Project: Architecture (D 55?

high-clocked CPU GPUs + “Weak” driving CPUs.
to maximize single thread perf

Booster = Highly Scalable —
If app needs a lot of compute

EXTREME
SCALE
BOOSTER

CLUSTER
MODULE
3 types of interconnects overall:
Ethernet
EXTOLL
Infiniband

+ Network Attached Memory
NETWORK + Global Collective Engine

FEDERATION

DATA
ANALYTICS
MODULE

SCALABLE
STORAGE

GPUs and FPGAs
Large DDR4 RAM capacities +
NVRAM as well

Template for the DEEP projects

Goals and Motivation for HEP ///DEEP

Projects

* Explore conventional HEP workflows on HPC infrastructure
— Experiment with ways to deliver software stack
— Experiment with new architectures (arch/uarch)

* EXxplore heterogenous options for data processing
— CUDA// OpenCL / etc. devices

* Explore large scale ML/DL training/inference with HPC resources
— usability of Apache Spark for HEP Data Analytics with HPDA resources
— Other frameworks...

*
Template for the DEEP projects *

IDEEP

Status: Exploring HPC Infrastructure Projects

* Several Deliverables were provided
— Providing the specifics of HEP use case
— Providing the preliminary mapping of the applications to the MSA.

* Complete CMS software stack delivery
— To JSC (cvmfs + frontier squid + xrootd + etc.)
— To Megware machines (binaries + frontier squid + xrootd + etc.)
— Mostly to test and select CPUs for different cluster modules

* For CMSSW benchmarking

— Employ official CMS Run 2 production workflows
— Slurm (batch system) configurations were quickly implemented.

—

*
Template for the DEEP projects *

Status: ML/DL on HPC: Image Classification ///DEEP
Pipeline Frojects

* Tight Integration of ROOT I/O with Apache Spark
— New data source implementation
— Allows pruning of deep nested structures to avoid bringing unnecessary fields

* The main use-case to be employed on the MSA is Deep Learning Image
Classification Pipeline

— 10TB simulated input
— Feature Engineering pipeline is implemented
— ML is implemented by @Mmiglio

* Multi-node tests of Apache Spark with Slurm
— Needs further better integration

— Currently just standalone clusters

Presented at Apache Spark Summit, London 2018

.
Template for the DEEP projects *

IDEEP

Heterogenous Resources for data processing Projects

* Heterogenous Execution for CMSSW
— Concentrating on HCAL / ECAL Local Energy Reconstruction

Current Calorimeters take 20-25% RECO time
And both use the same algorithm -> fast NNLS Eicamma JSMET

HCAL local reconstruction

Table 2.1: Time spent into the various HLT reconstruction steps

Step Real-Time Percentage

ECAL local reconstruction 38.9 ms 8.25% Pixel racking ECAL local reconatruction
HCAL local reconstruction 73.9 ms 15.67%

Jets/MET 14 ms 2.97%

E/Gamma 20.4 ms 4.33%

Muons 34.2 ms 7.25%

Pixel tracking 65.7 ms 13.93% overhead
Full tracking 1142ms 24.22%

Vertex reconstruction 2.3 ms 0.49%

Particle Flow and Taus 36.8 ms 7.8%

HLT 14.7 ms 3.12% Fulltracking

Overhead 56.4 ms 11.96% Particle Flow and Taus

Vertex reconstruction

Total 471.5 ms 100%

IDEEP

Standalone Implementation Projects

CPU:
Intel(R) Core(TM) i7-4770K CPU
@ 3.50GHz

Tested with Tesla and Volta GPUs

CPU version runs single threaded as it is

done for production jobs. Given a fully loaded ,

CPU, no benefit from additional concurrency

The point is to remove this load from CPU
And understand if this removal is beneficial
(transfer + exe + transfer back)

Template for the DEEP projects

speed-up

Speed-up using legacy cpu as reference value

legacy gpu v100
gpu_v100

legacy gpu_teslaK40c
gpu_teslak40c
legacy cpu

cpu

0
1024 2048 4096 8192 16384 32768 65536

channels

We observe factor of 5x speed up w.r.t.
Single threaded CPU implementation

In standalone version

For #calo channels >= 8K with Volta cards

Porting to CMSSW IDEEP

Projects

. Implemented and Integrated Hcal Reconstruction (MAHI) GPU vs CPU

. hEnergy_cpuvsgpu_mabhi)3
- apart from a couple (time slew) of 5 100¢ Enfies 209496
corrections 2 oo Meanx 0.6686 0
g - Mean y 0.6686
: o - - StdDevx 1.342 0
« Physics Validation ‘ > 80— StdDevy 1.342
_ o o 70— 120
» tested in production job config with 8 =
tbb threads/streams {cmssw} 60 — . 100
* 1 cuda stream per cpu thread 50
= - 80
 Next 40— -
» Polishing o= -
* More Validation = 40
« Same for Ecal 20—
* Improve/Understand performance 10 20
0_ 11 | | | | | | | | | I T | I | | | | T | | I | | I I | | | I | | | | 0
0 10 20 30 40 50 60 70 80 90 100

cpu energy

*
Template for the DEEP projects

R Very Very Very preliminary ///DEEP

More exotic? Testing Intel FPGAs Projects
Data Flow for FNNLS

Standalone implementation of Fast NNLS in OpenCL

Offloading N channels

impl details
« Single-work item kernel and no replication (for now)

* No pipes {yet}, monolithic {=> suboptimal}
« Essentially ¢ with fpga-specific pragmas

; Logic utilization

; ALUTs

; Dedicated logic registers
; Memory blocks

; DSP blocks

~5x slower than a cpu version with eigen (but no logic replication, etc...)
But with Identical results (up to 107-4)

IIDEEP

Projects

uropean Union’s Seve

-2020- FETHPC-7543Q4 (DEEP-EST).
. d

