Machine Learning Pipelines with Apache Spark and Intel BigDL

M. Migliorini\(^1\), V. Khristenko\(^1\)
M. Pierini\(^1\), E. Motesnitsalis\(^1\), L. Canali\(^1\), M. Girone\(^1\)

\(^1\) CERN, Geneva, Switzerland; \(^2\) University of Padova, Padova, Italy

End-to-End ML Pipeline
- The goal of this work is to produce a demonstrator of an end-to-end Machine Learning pipeline using Apache Spark.
- Investigate and develop solutions integrating:
 - Data Engineering/Big Data tools
 - Machine Learning tools
 - Data analytics platform
- Use Industry standard tools:
 - Well known and widely adopted
 - Open the HEP field to a larger community
- The Pipeline is composed by the following stages:
 - Data Ingestion
 - Feature Preparation
 - Parameters Tuning
 - Training

HEP use case
- The ability to classify events is of fundamental importance and Deep Learning proved to be able to outperform other ML methods.
- See paper: “Topology classification with deep learning to improve real time event selection at LHC” (arXiv:1807.00083v2)

Machine Learning Pipelines
- **W+j** (63.4%)
- **QCD** (36.2%)
- **tt\(\bar{t}\)** (0.4%)

The Pipeline
- Filter events: require the presence of isolated leptons
- Prepare input for the classifiers
 - Produce multiple datasets
 - Raw data (list of particles)
 - High Level features
- Store results in parquet files
 - Dev. dataset (100k events)
 - Full dataset (5M events)

Training
- Trained the three models using various hardware and configurations
 - Observed near linear scalability of Intel BigDL
 - Reproduced the classifiers performance of the source paper

Summary
- Created an end-to-end ML pipeline using Apache Spark
 - Python & Spark allow to distribute computation in a simple way
 - Intel BigDL scales well and it is easy to use because it has a similar API to Keras
 - Interactive analysis made easier by Jupiter Notebooks
- Future work
 - Test pipeline using cloud resources
 - Further performance improvements on data preparation and training
 - Model Serving: implement inference on streaming data

https://openlab.cern/

Data Ingestion
- EOS storage
 - Input:
 - 10 TB of ROOT files
 - 50M events
 - Access physics data stored in EOS using Hadoop-XRootD Connector
 - Read ROOT files into a Spark DF using Spark-ROOT reader

Feature Preparation
- Filter events: require the presence of isolated leptons
- Prepare input for the classifiers
 - Produce multiple datasets
 - Raw data (list of particles)
 - High Level features
- Store results in parquet files
 - Dev. dataset (100k events)
 - Full dataset (5M events)

Training
- Trained the three models using various hardware and configurations
 - Observed near linear scalability of Intel BigDL
 - Reproduced the classifiers performance of the source paper

Summary
- Created an end-to-end ML pipeline using Apache Spark
 - Python & Spark allow to distribute computation in a simple way
 - Intel BigDL scales well and it is easy to use because it has a similar API to Keras
 - Interactive analysis made easier by Jupiter Notebooks
- Future work
 - Test pipeline using cloud resources
 - Further performance improvements on data preparation and training
 - Model Serving: implement inference on streaming data

https://openlab.cern/

Parameters Tuning
- Scan a grid of parameters to find the best model
- Train multiple models at the same time (one per executor)

Model #1
- Scan a grid of parameters to find the best model
- Train multiple models at the same time (one per executor)

Model #2
- Scan a grid of parameters to find the best model
- Train multiple models at the same time (one per executor)

Model #3
- Scan a grid of parameters to find the best model
- Train multiple models at the same time (one per executor)