Application of AWAKE acceleration scheme to high energy physics experiment

Matthew Wing (UCL)

• Introduction to AWAKE
• Beam properties and “Luminosity” for the SPS as a driver
• Possible experiments with AWAKE scheme
• Search for dark photons
• ep colliders
• Summary
AWAKE experiment at CERN

Demonstrate for the first time proton-driven plasma wakefield acceleration.

Advanced proton-driven plasma wakefield experiment.

Using 400 GeV SPS beam in former CNGS target area.

- AWAKE was approved as a CERN project in August 2013.
- Demonstrate and understand self-modulation of long proton bunch [2016–8].
- Sample high-gradient wakefields with electron bunch and accelerate to \(O(\text{GeV})\) [2018].
- AWAKE Run 2 [2021–4].
- Then HEP applications …
Modulation of proton bunch
• Clear defocusing of proton bunch.
• Clear modulation of proton bunch.
 › Met first milestone of demonstration of self-modulation of long proton bunch.

Electron acceleration in AWAKE

- Observed up to 2 GeV
- Data taken in May and published in Nature in August
- Meeting of other major milestone.
- Other studies and measurements ongoing as is preparing for AWAKE Run 2…
AWAKE Run 2

 - Accelerate electron bunch to higher energies.
 - Demonstrate beam quality preservation.
 - Demonstrate scalability of plasma sources.

Preliminary Run 2 electron beam parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc. gradient</td>
<td>>0.5 GV/m</td>
</tr>
<tr>
<td>Energy gain</td>
<td>10 GeV</td>
</tr>
<tr>
<td>Injection energy</td>
<td>≥ 50 MeV</td>
</tr>
<tr>
<td>Bunch length, rms</td>
<td>40–60 μm (120–180 fs)</td>
</tr>
<tr>
<td>Peak current</td>
<td>200–400 A</td>
</tr>
<tr>
<td>Bunch charge</td>
<td>67–200 pC</td>
</tr>
<tr>
<td>Final energy spread, rms</td>
<td>few %</td>
</tr>
<tr>
<td>Final emittance</td>
<td>≤ 10 μm</td>
</tr>
</tbody>
</table>

- Goal: after Run 2, in a position to provide beam for particle physics experiments
- Are there experiments that require an electron beam of up to $O(50 \text{ GeV})$?
- Using the LHC beam as a driver, TeV electron beams are possible.

E. Adli (AWAKE Collaboration), IPAC 2016 proceedings, p.2557 (WEPMY008).
Input to the European Particle Physics Strategy Update

December 2018

Corresponding author: m.wing@ucl.ac.uk
Using the SPS for high energy electrons

- Bunches of electrons with $O(50 \text{ GeV})$ each accelerated in 50–100 m plasma.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AWAKE-upgrade-type</th>
<th>HL-LHC-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton energy E_p (GeV)</td>
<td>400</td>
<td>450</td>
</tr>
<tr>
<td>Number of protons per bunch N_p</td>
<td>3×10^{11}</td>
<td>2.3×10^{11}</td>
</tr>
<tr>
<td>Longitudinal bunch size protons σ_z (cm)</td>
<td>6</td>
<td>7.55</td>
</tr>
<tr>
<td>Transverse bunch size protons σ_r (μm)</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Proton bunches per cycle n_p</td>
<td>8</td>
<td>320</td>
</tr>
<tr>
<td>Cycle length (s)</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>SPS supercycle length (s)</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Electrons per cycle N_e</td>
<td>2×10^9</td>
<td>5×10^9</td>
</tr>
</tbody>
</table>

Table 2: Potential achievable number of electrons on target for an AWAKE-based fixed target experiment for two different drive beam configurations. Assumes a 12 week experimental period with a 70% SPS duty cycle.

- Estimate of number of electrons on target for dark photon searches.
- Can also be used for other experiments, e.g. deep inelastic scattering, etc.
- If use LHC as a driver, can have $O(\text{TeV})$ electron beams.
Possible experiments

- Searches for dark photons (à la NA64) with high energy electrons.
- Investigation of strong-field QED
 - Can measure non-linear QED, e.g. $\gamma + n\gamma \rightarrow e^+e^-$ in $e\gamma$ or $\gamma\gamma$ collisions in which a laser provides a strong field.
 - Complement efforts at EuXFEL, FACET-II and in laser wakefield studies
- Deep inelastic ep/eA collisions with:
 - $\sqrt{s} = 1.2$ TeV for $E_e = 50$ GeV using SPS as a plasma driver
 - $\sqrt{s} = 9.2$ TeV for $E_e = 3$ TeV using LHC as a plasma driver
 - or fixed-target variants with these electron beams
- The FCC protons would be very effective plasma drivers.
 - Introduce plasma cells in straight section for multi-TeV electrons.
 - Possible to have > 50 GeV electrons with minimal disturbance of protons.
- Acceleration of muons to high energies.
 - “Fast” (> GV/m) acceleration could get muons to high energies.
 - Should be considered further.
- More ideas welcome…
Search for dark photons using an AWAKE-like beam

• NA64 are making great progress investigating the dark sector:
 ‣ Dark sectors with light, weakly-coupling particles are a compelling possibility for new physics.
 ‣ Search for dark photons, \(A' \), up to GeV mass scale via their production in a light-shining-through-a-wall type experiment.
 ‣ Use high energy electrons for beam-dump and/or fixed-target experiments.

• An AWAKE-like beam will have higher intensity than the SPS secondary beam.
• Provide upgrade/extension to NA64 programme.
• Using NA64 software and similar detectors.
Dark photons search, $A' \rightarrow e^+ e^-$ channel

- For $10^{10} - 10^{13}$ electrons on target with NA64.
- For $(10^{15}$ and $)10^{16}$ electrons on target with AWAKE-like beam.
- Using an AWAKE-like beam would extend sensitivity further:
 - around $\varepsilon \sim 10^{-3} - 10^{-5}$.
 - to high masses ~ 0.1 GeV.
- At 1 TeV goes to even higher masses:
 - similar ε values.
 - approaching 1 GeV.
 - beyond any other planned experiments.
Dark photons search

Global plots

• Expect significant development in the field in the next decade.
• AWAKE can play a role.

Future studies

- Still much to look at for the dark photon search
 - Optimised beam properties, energy, e.o.t., etc.
 - Look at other channels, e.g. $A' \rightarrow \mu^+\mu^-$, $A' \rightarrow \pi^+\pi^-$, $A' \rightarrow \chi\chi$
 - Optimisation of detector size and parts.
 - Better consideration of backgrounds.

- Work will continue.
PEPIC

- PEPIC: Plasma Electron Proton/Ion Collider

Figure 5: Schematic layout of the AWAKE++ PEPIC facility (not to scale).

- Use SPS as driver for $E_e = 50$ GeV and $\sqrt{s} = 1.2$ TeV ($E_p = 7$ TeV), but with modest luminosities, $O(10^{27} \text{ cm}^{-2} \text{ s}^{-1})$; look into ways of increasing luminosity.

- Possible ideas for accelerator design and integration be considered

- Interesting should the LHeC not go ahead.
VHEeP

- VHEeP: Very high energy electron proton collider
- Use LHC as driver for $E_e = 3 \text{ TeV}$ and $\sqrt{s} = 9.2 \text{ TeV}$, but with modest luminosities, $O(10^{28}-10^{29} \text{ cm}^{-2} \text{ s}^{-1})$; looking into ways of increasing.
- Completely new regime; exciting physics potential
- Revolutionise QCD; new theories; links to gravity, cosmic rays, etc..

![Diagram of VHEeP and LHC](image-url)
Summary

• The AWAKE experiment has had a very successful 2018.

• The application of the AWAKE scheme to particle physics experiments has been advancing well:
 - An increased number of electrons on target can lead to a competitive search for dark photons.
 - Facility and integration issues have been addressed for a fixed-target/beam-dump experiment and for an ep collider.
 - There is a novel ep physics programme to be pursued.
 - Other ideas have been proposed and hopefully more will come.

• Work will continue on these studies, also as we learn more from the AWAKE experiment.
Back-up, extra
AWAKE spectrometer
Electron acceleration reproducibility
Very high energy electron–proton collisions, VHEeP

• What about very high energies in a completely new kinematic regime?
• Choose $E_e = 3$ TeV as a baseline for a new collider with $E_p = 7$ TeV ⇒ $\sqrt{s} = 9$ TeV.
• Acceleration of electrons in under 4 km.
• Can vary the energy.
• Centre-of-mass energy $\times 30$ higher than HERA.
• Reach in (high) Q^2 and (low) Bjorken x extended by $\times 1000$ compared to HERA.

Idea presented at various workshops and published recently*. Also had a workshop to expand physics case:

https://indico.mpp.mpg.de/event/5222/overview

Vector meson cross sections

Strong rise with energy related to gluon density at low x.

Can measure all particles within the same experiment.

Comparison with fixed-target, HERA and LHCb data—large lever in energy.

At VHEeP energies, $\sigma(J/\psi) > \sigma(\phi)$!

Onset of saturation?

Virtual-photon–proton cross section

- Cross sections for all Q^2 are rising; again luminosity not an issue, will have huge number of events.
- Depending on the form, fits cross; physics does not make sense.
- Different forms deviate significantly from each other.
- VHEeP has reach to investigate this region and different behaviour of the cross sections.
- Can measure lower Q^2, i.e. lower x and higher W.
- Unique information on form of hadronic cross sections at high energy.

VHEeP will explore a region of QCD where we have no idea what is happening.
Some highlights:

• Observe saturation; theory of hadronic interactions (Bartels, Mueller, Stodolsky, etc.)
• Relation of low-x physics to cosmic rays (Stasto); to black holes and gravity (Erdmenger); and to new physics descriptions (Dvali, Kowalski)
• Status of simulations (Plätzer)
• Challenge of the detector (Keeble)
• What understood from HERA data (Myronenko)
Leptoquark production

Electron–proton colliders are the ideal machine to look for leptoquarks.

s-channel resonance production possible up to \sqrt{s}.

\[\sigma^{NWA} = (J + 1) \frac{\pi}{4s} \lambda^2 q(x_0, M_{LQ}^2) \]

Sensitivity depends mostly on \sqrt{s} and $VHE\text{e}P = 30 \times \text{HERA}$
Leptoquark production at VHEeP

- Assumed $L \sim 100 \text{ pb}^{-1}$
- Required $Q^2 > 10,000 \text{ GeV}^2$ and $y > 0.1$

Generated “data” and Standard Model “prediction” using ARIADNE (no LQs).

Sensitivity up to kinematic limit, 9 TeV.

As expected, well beyond HERA limits and significantly beyond LHC limits and potential.