A primary electron beam facility at CERN – an update

CERN PBC workshop - January 17th, 2019
S. Stapnes (CERN)
on behalf of the working group PBC-acc-e-beams** (email: PBC-acc-e-beams@cern.ch)
Motivations

- Physics: Large increasing interest in Light Dark Matter – using e-beams, the key to this "proposal" – see LDMX talk yesterday by Ruth Pöttgen: slides

- Next step for X-band technology: Any next machine at CERN is beyond LHC, i.e. 15+ years away
 - We have looked carefully at what we could do with CLIC beam and/or drive-beam at a small scale – scaling the industry experience
 - Combing a compact linac with the SPS electron experience and provides unique opportunities

- Beyond a physics programme - future accelerator R&D: Accelerator R&D and project opportunities with e-beams as source - many of great interest for CERN
Electrons at CERN - overview

Accelerator implementation at CERN of LDMX type of beam

- X-band based 70m LINAC to ~3.5 GeV in TT4-5
- Fill the SPS in 1-2s (bunches 5ns apart) via TT60
- Accelerate to ~16 GeV in the SPS
- Slow extraction to experiment in 10s as part of the SPS super-cycle
- Experiment(s) considered by bringing beam back on Meyrin site using TT10

Beyond LDMX type of beam, other physics experiments considered (for example heavy photon searches)

Acc. R&D interests (see later): Overlaps with CLIC next phase (klystron based), FEL linac modules, e-beams for plasma, medical/irradiation/detector-tests/training, impedance measurements, instrumentation. positrons and damping ring R&D
The flow

3.5GeV Linac

Transfer to SPS

Acceleration in SPS

Extraction
Linac parameters

- 0.1GeV S-band injector
- 3.4GeV X-band linac
 - High gradient CLIC technology
 - 13 RF units to get 3.4 GeV in ~70 m

Possible parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy spread (uncorrelated*)</td>
<td><1MeV</td>
</tr>
<tr>
<td>Bunch charge</td>
<td>52 pC</td>
</tr>
<tr>
<td>Bunch length</td>
<td>~5ps</td>
</tr>
<tr>
<td>Norm. trans emittance</td>
<td>~10um</td>
</tr>
<tr>
<td>N bunches in one train</td>
<td>40</td>
</tr>
<tr>
<td>Train length</td>
<td>200 ns</td>
</tr>
<tr>
<td>Rep. rate</td>
<td>50/100 Hz</td>
</tr>
</tbody>
</table>

RF design of the X-BAND linac for the EUPRAXIA@SPARC_LAB project
M. Diomede Et al., IPAC18
Linac components available

- **Examples**

 - Klystron + Modulator

- **One RF unit accelerates**
 200ns bunch train up to 264 MeV

- Assembled systems in continues operation at CERN

Pulse compressor

Accelerating structure

modulator

kl

kl

\(p \)

\(c \)

\(\sim 5.3 \text{m} \)

\(\text{e}^- \)

Primary electron beam facility at CERN

European Organization for Nuclear Research

Organisation européenne pour la recherche nucléaire
Linac in TT5/TT4

- Flexible bunch pattern provided by photo-injector 5ns, 10ns, … 40ns bunch spacing
- High repetition rate
 - 200 ns trains at 100 Hz
- To be installed in the available transfer tunnels TT4, in line with the SPS
- Room for accelerator R&D activities at end of linac (duty cycle in many cases low for SPS filling so important potential)
Transfer tunnel, TT60, from the Linac into the SPS

Injection into the SPS

Bunch to bucket injection in the 200MHz SPS longitudinal RF structure.

Total of 75 trains of 40 bunches 3000 bunches 10^{12} electrons in the ring
SPS RF system

- Acceleration to 16 GeV can safely be achieved
- Existing 200 MHz cavities from LEP era to be re-installed
 - Need 10MV for 16GeV electrons
 - $(12 + 1) \times 200$ MHz Standing Wave Cavities [1 MV per cavity] available
- Space is available to install them
- 5ns, 10ns, … 40 ns longitudinal structure is imposed by the available cavities
- Trains of 200ns (linac) separated by 100ns gaps (injections kicker)

![Graph showing Voltage for 5min quantum lifetime vs Energy loss per turn (MeV). Courtesy J. Jowett.](image)

Primary electron beam facility at CERN
Slow extraction to experiments

Extraction

CERN’s Accelerator Complex

Primary electron beam facility at CERN
Slow extraction principle, in frequency space

- Spread in oscillation frequency within the beam follows
 - Transverse distribution
 - Longitudinal distribution in presence of chromatic lattice
- Position of the resonant condition is set by the machine
- Synchrotron radiation constantly diffuse the particles to fill the tail in the distribution
- The extraction rate can be controlled by changing the position of the resonant condition
Electron beam transfer line from the SPS to experiments

- Uses existing TT10 line, designed to transport 10/20 GeV beams

- Collimation in the line for control of beam distribution and intensity
 - ~ Gaussian beam can be made almost flat by careful collimation

- Beam size might be increased greatly at the target
 - Size of beam-spot chosen to deliver number of electrons/cm²/bunch-crossing on target
 - For instance a 2cm vertical and 20cm horizontal beam is feasible
 - There is flexibility on the choice of both horizontal and vertical beam sizes
Extracted beam and experimental area

In total ~50 m new tunnel

40m radius of curvature

Target

Primary electron beam facility at CERN
Instrumentation

Linac:
- **Position**
 - Re-use of CTF3 inductive pick-ups
 - Simple button BPMs would also do the job
- **Beam Size**
 - OTR screens (can also be combined with streak camera for bunch length)
- **Intensity**
 - Re-use of CTF3 inductive pick-up or standard beam current transformers

SPS:
- **Position**
 - Standard orbit system (consolidated in LS2)
 - Should be able to measure to 1e9 (limit ~5e8)
- **Beam Size**
 - Wirescanners
 - Possible use of synchrotron radiation
- **Intensity**
 - DC Transformer OK for total current
 - Fast BCT does not distinguish 5ns spaced bunches
 - Could do batch by batch but at limit of resolution (tbc)

Extracted beam:
- **Position & Intensity**
 - Use of fibre monitors.
 - Developed for new EHN1 (neutrino platform) secondary lines
 - Scintillating (or Cherenkov) fibres
 - Low material budget
 - > 90% efficiency for single particles demonstrated
 - R&D required to make them UHV compatible

The challenge of measuring very low intensity beam can be circumvented using a higher intensity for beam setup.
Structure of extracted beam

- **Flexibility**
 - Bunch spacing 5ns, 10ns, … 40ns
 - Average electrons per bunch can be chosen from <1 to anything
 - Transverse beam spot on target from very small up to hundred cm2

- **This flexibility can deliver the needs of LDMX**
 - Phase 1 : 10^{14} electrons
 - Phase 2 : 10^{16} electrons
Beamdump experiments possible

- After this beam has been delivered there is still a lot of electrons in the SPS
- These can quickly be dumped into a separate beam line
 - 10^{12} electrons within 23μs, possibly up to 4 times more

If there would be a high priority the dump can be repeated every 2 s
An Electron Beam Facility at CERN

Capability:
Extracting \(\sim 10\) electrons per 5 ns means \(10^{16}\) electrons in \(\sim 80\) days
Including up-times and efficiencies: a dedicated \(\sim\) year or a few years as part of super-cycle
Potential use of such a facility
(linac more than 90% free)

Physics:
LDMX - Other hidden sector exp., incl. dump-type experiments using the available electrons - Nuclear physics

Accelerator physics opportunities:
CLIC: Linac goes a long way towards a natural next step for use of technology (collaborate with INFN and others also using technology for X-band linacs in coming years)
Relevant also for other potential future facilities using electrons (rings) considered at CERN
Plasma studies with electrons
 Use electron (3.5 GeV) beam as driver and/or probe – studied by AWAKE WG
 Plasma-lenses, impedance, high grad studies, medical (electron irradiation), training, instrumentation, THz, ESA irradiation
Recent results: https://acceleratingnews.web.cern.ch/article/first-experimental-results-clear-facility-cern

Positron production (interesting for LC, rings and plasma) and studies with positrons for plasma and LEMMA concept for muon collider

General Linear or Ring related Collider related studies using SPS beam
 Example: damped beam for final focus studies (beyond ATF2)
Dark Sector Physics with a Primary Electron Beam Facility at CERN

EoI to the SPSC Oct 2018: https://cds.cern.ch/record/2640784
Also submitted in “compact form” to ESPP update 18.12 (cannot find public link)
Costs

Sources

- Industrial (e.g. RF components, structures for linacs)
- "Standard" rates (e.g. civil engineering)
- PBS with ~80 items, estimates from technical responsible

<table>
<thead>
<tr>
<th>PBS Item</th>
<th>Cost MCHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Source</td>
<td>6.0</td>
</tr>
<tr>
<td>1.2 X-band linac</td>
<td>34.1</td>
</tr>
<tr>
<td>2.1 Linac to SPS transfer</td>
<td>4.6</td>
</tr>
<tr>
<td>2.2 SPS fast injection</td>
<td>3.4</td>
</tr>
<tr>
<td>2.3 SPS ring</td>
<td>10.5</td>
</tr>
<tr>
<td>2.4 SPS slow extraction</td>
<td>3.3</td>
</tr>
<tr>
<td>2.5 Transfer SPS to Exp. Area</td>
<td>4.2</td>
</tr>
<tr>
<td>3.2 Civil Engineering</td>
<td>11.4</td>
</tr>
<tr>
<td>3.3 Exp. Area infrastructure</td>
<td>2.0</td>
</tr>
<tr>
<td>Sum</td>
<td>79.5</td>
</tr>
</tbody>
</table>
Schedule in the EoI

Technically based … however

- Respects that efforts during LS2 has to be limited
- No major spending or commitments until Spring/mid 2020 (ESU completion) -> need significant resources from then
- Final connection after end of LHC run in 2023
- Can run during LS3 when/if the SPS is available
- Need to decide now if we move ahead towards a CDR or similar in a year's time – resource/priority issue
LHC roadmap: according to MTP 2016-2020 V2

LS2 starting in 2019 => 24 months + 3 months BC
LS3 LHC: starting in 2024 => 30 months + 3 months BC
Injectors: in 2025 => 13 months + 3 months BC

PHASE 1
- 2015: Run 2
- 2016
- 2017
- 2018
- 2019: LS 2 (Red)
- 2020
- 2021

PHASE 2
- 2022
- 2023
- 2024
- 2025: LS 3 (Red)
- 2026
- 2027
- 2028

PHASE 3
- 2029
- 2030
- 2031
- 2032
- 2033
- 2034
- 2035

Q1 Q2 Q3 Q4

Primary electron beam facility at CERN

European Organization for Nuclear Research
Organisation européenne pour la recherche nucléaire
Concluding remarks

- Important physics opportunities with e-beams at CERN
- Based on previous usage of the CERN accelerator complex, and building on the accelerator R&D for CLIC an electron beam facility would be a natural next step
 - No show-stoppers have been found when exploring this option
 - LDMX interest in pursuing this option as beam close to ideal
- Will also provide many opportunities for important and strategic accelerator R&D at CERN – and opens the door to future electron facilities in general

- Thank you -